On Poisson’s functions of compressible elastomeric materials under compression tests in the framework of linear elasticity theory

  • H. BechirEmail author
  • A. Djema
  • S. Bouzidi
Original Paper


We analyze the compression of a right cylinder made of an elastomeric material, sliding on a rigid plate in the framework of linear elasticity theory. Lubrication seems to reduce the heterogeneous effects of lateral bulging so that the deformations can be considered as “quasi-homogeneous.” As a result, we show that the ratio between the transversal deformation and axial strain is not a Poisson’s ratio but a Poisson’s function.



We would like to thank the reviewers for their careful reading of the original manuscript. Their comments and suggestions have been incorporated into the improved final version. Thanks also due Mr. N. Ghezzou, English Teacher in the Department of Mechanical Engineering, University of Bejaia, to refine the English of this paper.


  1. 1.
    Suh, J.B., Kelly, S.G.: Stress response of the rubber block with frictional contact under axial loading. Int. J. Non-linear Mech. 68, 41–51 (2015)CrossRefGoogle Scholar
  2. 2.
    Banks, H.T., Pinter, G.A., Yeoh, O.H.: Analysis of bonded elastic blocks. Math. Comput. Model. 36, 875–888 (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Mott, P.H., Dorgan, J.R., Roland, C.M.: The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib. 312, 572–575 (2008)CrossRefGoogle Scholar
  4. 4.
    Gurvich, M.R., Fleischman, T.S.: A simple approach to characterize finite compressibility of elastomers. Rubber Chem. Technol. 76, 912–922 (2003)CrossRefGoogle Scholar
  5. 5.
    Habbit, S.I., Karlsson,: ABAQUS Documentation, Dassault Systèmes, RI, USA, (2013)Google Scholar
  6. 6.
    Destrade, M., Gilchrist, M., Motherway, J., Murphy, J.G.: Slight compressibility and sensitivity to changes in Poisson’s ratio. Int. J. Numer. Methods Eng. 90, 403–411 (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Yu, J.H., Dillard, D.A., Lefebvre, D.R.: Pressure and shear stress distributions of an elastomer constrained by a cylinder of finite length. Int. J. Solids Struct. 38, 6839–6849 (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 21, 1–6 (2009)Google Scholar
  9. 9.
    Babaee, S., Shim, J., Weaver, J.C., Chen, E.R., Patel, N., Bertoldi, K.: 3D soft metamaterials with negative Poisson’s ratio. Adv. Mater. 25(36), 5044–5049 (2013)CrossRefGoogle Scholar
  10. 10.
    Lakes, R.: Foam structures with negative Poisson’s ratio. Science 235, 1038–1040 (1987)CrossRefGoogle Scholar
  11. 11.
    Lakes, R.S., Wineman, A.: On Poisson’s ratio in linear viscoelastic solids. J. Elast. 85, 45–63 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pritchard, R.H., Lava, P., Debruyne, D., Terentjev, E.M.: Precise determination of the Poisson ratio in soft materials with 2D digital image correlation. Soft Matter 9, 6037–6045 (2013)CrossRefGoogle Scholar
  13. 13.
    Blatz, P.J., Ko, W.L.: Application of finite elasticity theory to the deformation of rubbery materials. Trans. Soc. Rheol. 251, 223–251 (1962)CrossRefGoogle Scholar
  14. 14.
    Beatty, M.F., Stalnaker, D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mihai, L.A., Goriely, A.: How to characterise a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic elasticity. Proc. A R. Soc. A 473, 1–33 (2017)zbMATHGoogle Scholar
  16. 16.
    Ciambella, J., Saccomandi, G.: A continuum hyperelastic model for auxetic materials. Proc. R. Soc. A 470, 1–14 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hilton, H.: Elastic and viscoelastic Poisson’s ratios: the theoretical mechanics perspective. Mater. Sci. Appl. 8, 232–291 (2017)Google Scholar
  18. 18.
    Tscharnuter, D., Jerabeck, M., Major, Z., Lang, R.W.: Time-dependent Poisson’s ratio of polypropylene compounds for various strain histories. Mech. Time-Depend. Mater. 15, 15–28 (2011)CrossRefGoogle Scholar
  19. 19.
    Tschoegl, N.W., Knauss, W., Emri, I.: Poisson’s ratio in linear viscoelasticity—a critical review. Mech. Time-Depend. Mater. 6, 3–51 (2002)CrossRefGoogle Scholar
  20. 20.
    Bechir, H., Chevalier, L., Chaouche, M., Boufala, K.: Hyperelastic constitutive model for rubber-like materials based on the first Seth strain measures invariant. Eur. J. Mech. A-Solids 25, 110–124 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    Jerabeck, M., Major, Z., Lang, R.W.: Uniaxial compression testing of polymeric materials. Polym. Test. 29, 302–309 (2010)CrossRefGoogle Scholar
  22. 22.
    Bradley, G.L., Chang, P.G., McKenna, G.B.: Modeling using uniaxial data. J. Appl. Polym. Sci. 81, 837–848 (2001)CrossRefGoogle Scholar
  23. 23.
    Gent, A.N., Lindely, P.B.: The compression of bonded rubber blocks. Proc. Inst. Mech. Eng. A249, 195–205 (1959)Google Scholar
  24. 24.
    Gent, A.N., Meinecke, E.A.: Compression, bending and shear of bonded rubber blocks. Polym. Eng. Sci. 10(2), 48–53 (1970)CrossRefGoogle Scholar
  25. 25.
    Gent, A.N.: Compression of rubber blocks. Rubber Chem. Technol. 67, 917–931 (1994)Google Scholar
  26. 26.
    Williams, J.G., Gamonpilas, C.: Using the simple compression test to determine Young’s modulus, Poisson’s ratio and Coulomb friction coefficient. Int. J. Solids Struct. 45(16), 4448–4459 (2009)CrossRefzbMATHGoogle Scholar
  27. 27.
    Horton, J.M., Tupholme, G.E., Gover, M.J.C.: Axial loading of bonded rubber blocks. J. Appl. Mech. 69, 836–843 (2002)CrossRefzbMATHGoogle Scholar
  28. 28.
    Qiao, S., Nanshu, L.: Analytical solutions for bonded elastically compressible layers. Int. J. Solids Struct. 58, 353–365 (2015)CrossRefGoogle Scholar
  29. 29.
    Stefan, J., Sitzungber, K.: Versuche über die scheinbare Adhesion. Akad. Wiss. Math. Natur. Wien 69, 713–735 (1874)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mécanique, Matériaux & Énergétique, Faculté de TechnologieUniversité BejaiaBejaïaAlgeria
  2. 2.Laboratoire de Physique théorique, Faculté des Sciences ExactesUniversité BejaiaBejaïaAlgeria

Personalised recommendations