Acta Mechanica

, Volume 230, Issue 11, pp 3861–3873 | Cite as

Rigorous versus naïve implementation of the Galerkin method for stepped beams

  • Isaac ElishakoffEmail author
  • Arvan Prakash Ankitha
  • Alessandro Marzani
Original Paper


In this study, we investigate the application of Galerkin’s method to evaluate the deflection of stepped beams. The naïve implementation, as usually executed in the literature, is contrasted with the rigorous version of the Galerkin method. Naïve implementation involves the integration extended over the steps of the beam where the cross-sectional area and flexural rigidity remain constant. Rigorous implementation treats flexural rigidity as the generalized function, with attendant additional terms associated with the derivatives of the generalized function. The above additional terms do not appear in the naïve implementation of the Galerkin method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was done when Prakash Ankitha Arvan served as Visiting Scholar at the Florida Atlantic University. She expresses her gratitude to the Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna for providing a grant to carry out the thesis at the Florida Atlantic University.


  1. 1.
    Galerkin, B.G.: Sterzhni i plastiny. Ryady v nekotorykh voprosakh uprugogo ravnovesiya sterzhnei i plastin (Rods and plates series occuring in some problems of elastic equilibrium of rods and plates), Vestnik Inzhenerov i Tekhnikov, Petrograd, Vol. 19, pp. 897–908 (1915) (in Russian) (English Translation: 63-18925, Clearinghouse Fed. Sci. Tech. Info. 1963)Google Scholar
  2. 2.
    Ritz, W.: Über eine neue Methode zur Lösung gewisser Randwertaufgaben. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch - Physikalische Klasse 236–248, 1908 (1908). (in German)Google Scholar
  3. 3.
    Michlin, S.G.: The Numerical Performance of Variational Methods. Wolters-Noordhoff Publishing, Groningen (1971)Google Scholar
  4. 4.
    Leipholz, H.H.E.: Use of Galerkin’s method for vibration problems. Shock Vib. Dig. 8, 3–18 (1976)CrossRefGoogle Scholar
  5. 5.
    Elishakoff, I., Lee, L.H.N.: On equivalence of the Galerkin and Fourier series methods for one class of problems. J. Sound Vib. 109, 174–177 (1986)CrossRefGoogle Scholar
  6. 6.
    Elishakoff, I., Zingales, M.: Coincidence of Boobnov–Galerkin and exact solution in an applied mechanics problem. J. Appl. Mech. 70, 777–779 (2003)CrossRefGoogle Scholar
  7. 7.
    Elishakoff, I., Zingales, M.: Convergence of Boobnov–Galerkin method exemplified. AIAA J. 42(9), 1931–1933 (2004)CrossRefGoogle Scholar
  8. 8.
    Gander, M.J., Wanner, G.: From Euler, Ritz, and Galerkin to modern computing. SIAM Rev. 54(4), 627–666 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bürgermeister, G., Steup, H.: Stabilitätstheorie, Berlin: Academie Verlag, pp. 195–197 (1957) (in German)Google Scholar
  10. 10.
    Bastatsky, B.N., Khvoles, A.R.: On some specifics of applying Bubnov–Galerkin method to practical analysis of structures, Stroitelnaya Mekhanika i Raschet Sooruzhenii, (Structural Mechanics and Analysis of Constructions), Issue 2, pp. 55–59 (1972) (in Russian)Google Scholar
  11. 11.
    Vainberg, D.V., Roitfarb, I.Z.: Analysis of plates and shells with discontinuous parameters. In: Raschet Prostranstvennykh Konstrukzii (Analysis of Space Structures), Vol. 10, pp. 38–80, Moscow: “Stroiizdat” Publishing House (1965) (in Russian)Google Scholar
  12. 12.
    Leipholz, H.: Über die Wahl der Ansatzfunktionen bei der Durchführung des Verfahrens von Galerkin. Acta Mech. 3(3), 295–317 (1967). (in German)Google Scholar
  13. 13.
    Leipholz, H.H.E.: On the convergence of Ritz and Galerkin’s Method in the case of certain nonconservative systems and using admissible coordinate functions. Acta Mech. 19(1–2), 57–76 (1974)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Leipholz, H.H.E.: The Galerkin formulation and the Hamilton–Ritz formulation: a critical review. Acta Mech. 47(3–4), 283–290 (1983)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Leipholz, H.H.E.: On the application of the direct method to initial value problems. Acta Mech. 58(3–4), 239–249 (1986)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bailey, C.D.: The Galerkin formulation and the Hamilton–Ritz formulation: a comparison. Acta Mech. 36(1–2), 63–70 (1980)CrossRefGoogle Scholar
  17. 17.
    Liu, Q., Zhang, X.-F.: A Chebyshev polynomial-based Galerkin method for the discretization of spatially varying random properties. Acta Mech. 228(6), 2063–2081 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sidhardh, S., Ray, M.C.: Element-free Galerkin model of nano-beams considering strain gradient elasticity. Acta Mech. 229(7), 2765–2786 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maurini, C., Porfiri, M., Pouget, J.: Numerical methods for modal analysis of stepped piezoelectric beams. J. Sound Vib. 298, 918–933 (2006)CrossRefGoogle Scholar
  20. 20.
    El-Said, S.M.: Crack detection in stepped beam carrying slowly moving mass. J. Vib. Control 14(12), 1903–1920 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Chehil, D.S., Jategaonkar, R.: Determination of natural frequencies of a beam with varying section properties. J. Sound Vib. 115(3), 423–436 (1987)CrossRefGoogle Scholar
  22. 22.
    Sohrabian, M., Ahmadian, H.: Dynamic stability of step beam carrying concentrated masses under follower force. J. Aerosp. Sci. Technol. 4(4), 1–6 (2007)Google Scholar
  23. 23.
    Borneman, S.R., Hashemi, S.M., Alighanbari, H.: Vibration analysis of cracked stepped laminated composite beams. Int. J. Veh. Struct. Syst. 1, 16–23 (2009)Google Scholar
  24. 24.
    Pirmoradian, M., Keshmiri, M., Karimpour, H.: On the parametric excitation of a Timoshenko beam due to intermittent passage of moving masses: instability and resonance analysis. Acta Mech. 226(4), 1241–1253 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Parkus, H.: Thermoelasticity, pp. 64–66. Blaisdell Publishing Company, Wlatham (1968)zbMATHGoogle Scholar
  26. 26.
    Singer, J.: On Equivalence of the Galerkin and Rayleigh–Ritz methods. J. R. Aeronaut. Soc. 66, 592 (1962)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Isaac Elishakoff
    • 1
    Email author
  • Arvan Prakash Ankitha
    • 2
  • Alessandro Marzani
    • 2
  1. 1.Department of Ocean and Mechanical EngineeringFlorida Atlantic UniversityBoca RatonUSA
  2. 2.Department of Civil, Chemical, Environmental, and Materials EngineeringUniversity of BolognaBolognaItaly

Personalised recommendations