Advertisement

Acta Mechanica

, Volume 230, Issue 6, pp 2221–2231 | Cite as

Swirling flow induced by jets and plumes

  • W. CoenenEmail author
  • P. Rajamanickam
  • A. D. Weiss
  • A. L. Sánchez
  • F. A. Williams
Original Paper

Abstract

The interactions of the slow flow induced by the entrainment of axisymmetric jets and plumes with the surrounding geometry may result in the appearance of azimuthal swirling motion. This swirling flow evolves as it approaches the jet (or plume) as a result of the action of viscous forces on the solid surfaces bounding the fluid domain. When the initial size of the jet or plume a is much smaller than the characteristic radial distance \(R_\infty \) at which the swirl is generated, the evolution of the flow leads to a self-similar description with weak swirling motion, valid at intermediate radial distances R such that \(a \ll R \ll R_\infty \) and axial distances L from the source such that \(a \ll L \ll R_\infty \). In the present investigation of both laminar and turbulent jets and plumes, it is found that the circulation \(\varGamma \) is described by a self-similar solution of the second kind, with the exponent \(\lambda \) in the radial decay rate \(\varGamma \propto (R/R_\infty )^\lambda \) obtained as an eigenvalue. The resulting azimuthal velocity distributions can find application in mathematical formulations of jet and plume problems involving interactions with ambient swirl, relevant in studies of dust devils and fire whirls.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank a referee for constructive comments.

References

  1. 1.
    Hall, M.G.: Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–218 (1972)CrossRefzbMATHGoogle Scholar
  2. 2.
    Leibovich, S.: The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221–246 (1978)CrossRefGoogle Scholar
  3. 3.
    Fujita, T.T.: Tornadoes around the world. Weatherwise 26, 56–83 (1973)CrossRefGoogle Scholar
  4. 4.
    Maxworthy, T.: A vorticity source for large-scale dust devils and other comments on naturally occurring columnar vortices. J. Atmos. Sci. 30, 1717–1722 (1973)CrossRefGoogle Scholar
  5. 5.
    Tohidi, A., Gollner, M.J., Xiao, H.: Fire whirls. Ann. Rev. Fluid Mech. 50, 187–213 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., Moeck, J.P.: Dynamics of swirling flames. Ann. Rev. Fluid Mech. 46, 147–173 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Emmons, H.W., Ying, S.-J.: The fire whirl. Proc. Combust. Inst. 11, 475–488 (1967)CrossRefGoogle Scholar
  8. 8.
    Mullen, J.B., Maxworthy, T.: A laboratory model of dust devil vortices. Dyn. Atmos. Oceans 1, 181–214 (1977)CrossRefGoogle Scholar
  9. 9.
    Byram, G.M., Martin, R.E.: Fire whirl-winds in the laboratory. Fire Control Notes 23, 13–17 (1962)Google Scholar
  10. 10.
    Schneider, W.: Flow induced by jets and plumes. J. Fluid Mech. 108, 55–65 (1981)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mitsotakis, K., Schneider, W., Zauner, E.: Second-order boundary-layer theory of laminar jet flows. Acta Mech. 53, 115–123 (1981)CrossRefGoogle Scholar
  12. 12.
    Schneider, W.: Decay of momentum flux in submerged jets. J. Fluid Mech. 154, 91–110 (1985)CrossRefGoogle Scholar
  13. 13.
    Schneider, W., Zauner, E., Böhm, H.: The recirculatory flow induced by a laminar axisymmetric jet issuing from a wall. J. Fluids Eng. 109, 237–241 (1987)CrossRefGoogle Scholar
  14. 14.
    Zauner, E.: Visualization of the viscous flow induced by a round jet. J. Fluid Mech. 154, 111–119 (1985)CrossRefGoogle Scholar
  15. 15.
    Sforza, P.M., Mons, R.F.: Mass, momentum, and energy transport in turbulent free jets. Int. J. Heat Mass Transf. 21, 371–384 (1978)CrossRefGoogle Scholar
  16. 16.
    Townsend, A.A.: The Structure of Turbulent Shear Flow. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar
  17. 17.
    Taylor, G.I.: Flow induced by jets. J. Aero/Space Sci. 25, 464–465 (1957)Google Scholar
  18. 18.
    Revuelta, A., Sánchez, A.L., Liñán, A.: The virtual origin as a first-order correction for the far-field description of laminar jets. Phys. Fluids 14, 1821–1824 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Schlichting, H.: Laminare Strahlausbreitung. Z. Angew. Math. Mech. 13, 260–263 (1933)CrossRefzbMATHGoogle Scholar
  20. 20.
    Zel’dovich, Y.B.: The asymptotic laws of freely-ascending convective flows. Zhur. Eksper. Teor. Fiz 7, 1463–1465 (1937)Google Scholar
  21. 21.
    Yih, C.S.: Free convection due to a point source of heat. In: Proceedings of the First US National Congress of Applied Mechanics, pp. 941–947 (1951)Google Scholar
  22. 22.
    Turner, J.S.: Buoyant plumes and thermals. Annu. Rev. Fluid Mech. 1, 29–44 (1969)CrossRefGoogle Scholar
  23. 23.
    Fujii, T.: Theory of the steady laminar natural convection above a horizontal line heat source and a point heat source. Int. J. Heat Mass Transf. 6, 597–606 (1963)CrossRefGoogle Scholar
  24. 24.
    Kurdyumov, V.N., Liñán, A.: Free convection from a point source of heat, and heat transfer from spheres at small Grashof numbers. Int. J. Heat Mass Transf. 42, 3849–3860 (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Barenblatt, G.I., Zel’dovich, Y.B.: Self-similar solutions as intermediate asymptotics. Annu. Rev. Fluid Mech. 4, 285–312 (1972)CrossRefzbMATHGoogle Scholar
  26. 26.
    Revuelta, A., Sánchez, A.L., Liñán, A.: Confined swirling jets with large expansion ratios. J. Fluid Mech. 508, 89–98 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Thomas, T.G., Takhar, H.S.: Swirling motion in a buoyant plume. Acta Mech. 71, 185–193 (1988)CrossRefGoogle Scholar
  28. 28.
    Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn, pp. 672–673. Springer, Berlin (2017)CrossRefzbMATHGoogle Scholar
  29. 29.
    Ricou, F.P., Spalding, D.B.: Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11, 21–32 (1961)CrossRefzbMATHGoogle Scholar
  30. 30.
    Burggraf, O.R., Stewartson, K., Belcher, R.: Boundary layer induced by a potential vortex. Phys. Fluids 14, 1821–1833 (1971)CrossRefzbMATHGoogle Scholar
  31. 31.
    Batchelor, G.K.: Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80, 339–358 (1954)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California, San DiegoLa JollaUSA

Personalised recommendations