Advertisement

Acta Mechanica

, Volume 230, Issue 6, pp 2201–2220 | Cite as

The mechanism of long-wave instability in a shear-thinning film flow on a porous substrate

  • S. MilletEmail author
  • R. Usha
  • V. Botton
  • F. Rousset
Original Paper
  • 44 Downloads

Abstract

A linear stability analysis of a thin shear-thinning film with a deformable top surface flowing down an inclined porous substrate modelled as a smooth substrate with velocity slip at the wall is examined, and the physical mechanism for the long-wave instability is analysed. Through a phenomenological model, the influence of slip velocity and the shear-thinning rheology on the wave speed of long surface waves on a non-Newtonian shear-thinning film down a substrate with velocity slip is predicted. The viscosity disturbance plays a significant role in the destabilization of the flow system. Indeed, slip at the bottom that accounts for the characteristics of the porous/rough substrate does not affect the physical mechanism of the instability. However, it is shown that slip at the bottom enhances the inertia effects which in turn destabilizes the flow system at smaller Reynolds numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Amaouche, M., Mehidi, N., Amatousse, N.: Linear stability of a two-layer film flow down an inclined channel: a second-order weighted residual approach. Phys. Fluids 19(8), 084106 (2007)zbMATHGoogle Scholar
  2. 2.
    Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)Google Scholar
  3. 3.
    Benjamin, T.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2(06), 554–573 (1957)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bird, R.B., Armstrong, R.C., Hassager, O., Curtiss, C.F.: Dynamics of Polymeric Liquids, vol. 1. Wiley, New York (1977)Google Scholar
  5. 5.
    Carreau, P., Kee, D., Daroux, M.: An analysis of the viscous behaviour of polymeric solutions. Can. J. Chem. Eng. 57(2), 135–140 (1979)Google Scholar
  6. 6.
    Chang, H.: Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26(1), 103–136 (1994)MathSciNetGoogle Scholar
  7. 7.
    Chang, M.H.: Thermal convection in superposed fluid and porous layers subjected to a plane poiseuille flow. Phys. Fluids 18(3), 035104 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chang, M.H., Chen, F., Straughan, B.: Instability of poiseuille flow in a fluid overlying a porous layer. J. Fluid Mech. 564, 287–303 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chattopadhyay, G., Ranganathan, U., Millet, S.: Instabilities in viscosity-stratified two-fluid channel flow over an anisotropic-inhomogeneous porous bottom. Phys. Fluids 31(1), 012103 (2019)Google Scholar
  10. 10.
    Cheremisinoff, N.: Encyclopedia of Fluid Mechanics: Rheology and Non-Newtonian Flows, vol. 7. Gulf Publishing Corp., Houston (1988)Google Scholar
  11. 11.
    Craster, R., Matar, O.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81(3), 1131 (2009)Google Scholar
  12. 12.
    Danaila, L., Voivenel, L., Varea, E.: Self-similarity criteria in anisotropic flows with viscosity stratification. Phys. Fluids 29(2), 020716 (2017)Google Scholar
  13. 13.
    Ewing, R.E., Weekes, S.: Numerical methods for contaminant transport in porous media. Adv. Comput. Math. 202, 75–95 (1998)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gao, P., Lu, X.Y.: Mechanism of the long-wave inertialess instability of a two-layer film flow. J. Fluid Mech. 608, 379–391 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ghosh, S., Usha, R.: Stability of viscosity stratified flows down an incline: role of miscibility and wall slip. Phys. Fluids 28(10), 104101 (2016)Google Scholar
  16. 16.
    Govindarajan, R., Sahu, K.C.: Instabilities in viscosity-stratified flow. Annu. Rev. Fluid Mech. 46, 331–353 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Goyal, H., Kumar, A.A.P., Bandyopadhyay, D., Usha, R., Banerjee, T.: Instabilities of a confined two-layer flow on a porous medium: an Orr–Sommerfeld analysis. Chem. Eng. Sci. 97, 109–125 (2013)Google Scholar
  18. 18.
    Hill, A.A., Straughan, B.: Poiseuille flow in a fluid overlying a porous medium. J. Fluid Mech. 603, 137–149 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hwang, C.C., Chen, J.L., Wang, J.S., Lin, J.S.: Linear stability of power law liquid film flows down an inclined plane. J. Phys. D: Appl. Phys. 27(11), 2297 (1994)Google Scholar
  20. 20.
    Iervolino, M., Pascal, J.P., Vacca, A.: Instabilities of a power-law film over an inclined permeable plane: a two-sided model. J. Non-Newton. Mech. 259, 111–124 (2018)MathSciNetGoogle Scholar
  21. 21.
    Kalliadasis, S., Ruyer-Quil, C., Scheid, B., Velarde, M.: Falling Liquid Films. Springer Series on Applied Mathematical Sciences. Springer, London (2011)zbMATHGoogle Scholar
  22. 22.
    Kelly, R., Goussis, D., Lin, S., Hsu, F.: The mechanism for surface wave instability in film flow down an inclined plane. Phys. Fluids A: Fluid Dyn. 1(5), 819–828 (1989)Google Scholar
  23. 23.
    Knox, D.J., Duffy, B.R., McKee, S., Wilson, S.K.: Squeeze-film flow between a curved impermeable bearing and a flat porous bed. Phys. Fluids 29(2), 023101 (2017).  https://doi.org/10.1063/1.4974521 Google Scholar
  24. 24.
    Kumar, A.A.P., Goyal, H., Banerjee, T., Bandyopadhyay, D.: Instability modes of a two-layer newtonian plane couette flow past a porous medium. Phys. Rev. E 87(6), 063003 (2013)Google Scholar
  25. 25.
    Liu, R., Liu, Q.: Instabilities of a liquid film flowing down an inclined porous plane. Phys. Rev. E 80(3), 036316 (2009)Google Scholar
  26. 26.
    Liu, R., Liu, Q.S., Zhao, S.C.: Instability of plane poiseuille flow in a fluid-porous system. Phys. Fluids 20(10), 104105 (2008)zbMATHGoogle Scholar
  27. 27.
    Maissel, L.I., Glang, R.: Handbook of Thin Film Technology. McGraw-Hill, New York (1970)Google Scholar
  28. 28.
    Millet, S., Botton, V., Ben Hadid, H., Henry, D., Rousset, F.: Stability of two-layer shear-thinning film flows. Phys. Rev. E 88(4), 043004 (2013).  https://doi.org/10.1103/PhysRevE.88.043004 Google Scholar
  29. 29.
    Millet, S., Botton, V., Rousset, F., Ben Hadid, H.: Wave celerity on a shear-thinning fluid film flowing down an incline. Phys. Fluids 20(3), 031701 (2008)zbMATHGoogle Scholar
  30. 30.
    Myers, T.: Application of non-Newtonian models to thin film flow. Phys. Rev. E 72(6), 066302 (2005)MathSciNetGoogle Scholar
  31. 31.
    Neogi, P., Miller, C.A.: Spreading kinetics of a drop on a rough solid surface. J. Colloid Interface Sci. 92(2), 338–349 (1983)Google Scholar
  32. 32.
    Nield, D.A., Bejan, A.: Convection in Porous Media, vol. 3. Springer, New York (2006)zbMATHGoogle Scholar
  33. 33.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931 (1997)Google Scholar
  34. 34.
    Pascal, J.: Linear stability of fluid flow down a porous inclined plane. J. Phys. D: Appl. Phys. 32(4), 417 (1999)MathSciNetGoogle Scholar
  35. 35.
    Picchi, D., Barmak, I., Ullmann, A., Brauner, N.: Stability of stratified two-phase channel flows of Newtonian/non-Newtonian shear-thinning fluids. Int. J. Multiph. Flow 99, 111–131 (2018)MathSciNetGoogle Scholar
  36. 36.
    Rousset, F., Millet, S., Botton, V., Ben Hadid, H.: Temporal stability of Carreau fluid flow down an incline. J. Fluids Eng.—Trans. ASME 129(7), 913–920 (2007)Google Scholar
  37. 37.
    Sadiq, I.M.R., Usha, R.: Thin Newtonian film flow down a porous inclined plane: stability analysis. Phys. Fluids 20(2), 022105 (2008)zbMATHGoogle Scholar
  38. 38.
    Sadiq, I.M.R., Usha, R.: Long-wave instabilities in a non-Newtonian film on a nonuniformly heated inclined plane. J. Fluids Eng. 131(3), 031202 (2009)Google Scholar
  39. 39.
    Saikia, B., Ramachandran, A., Sinha, K., Govindarajan, R.: Effects of viscosity and conductivity stratification on the linear stability and transient growth within compressible Couette flow. Phys. Fluids 29(2), 024105 (2017)Google Scholar
  40. 40.
    Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)zbMATHGoogle Scholar
  41. 41.
    Smith, M.K.: The mechanism for the long-wave instability in thin liquid films. J. Fluid Mech. 217, 469–485 (1990)zbMATHGoogle Scholar
  42. 42.
    Thiele, U., Goyeau, B., Velarde, M.G.: Stability analysis of thin film flow along a heated porous wall. Phys. Fluids 21(1), 014103 (2009)zbMATHGoogle Scholar
  43. 43.
    Usha, R., Millet, S., BenHadid, H., Rousset, F.: Shear-thinning film on a porous substrate: stability analysis of a one-sided model. Chem. Eng. Sci. 66(22), 5614–5627 (2011)Google Scholar
  44. 44.
    Usha, R., Tammisola, O., Govindarajan, R.: Linear stability of miscible two-fluid flow down an incline. Phys. Fluids 25(10), 104102 (2013)zbMATHGoogle Scholar
  45. 45.
    Vempati, B., Oztekin, A., Neti, S.: Stability of two-layered fluid flows in an inclined channel. Acta Mech. 209(3–4), 187–199 (2010)zbMATHGoogle Scholar
  46. 46.
    Weinstein, S.: Wave propagation in the flow of shear-thinning fluids down an incline. AIChE J. 36(12), 1873–1889 (1990)Google Scholar
  47. 47.
    Yih, C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6(3), 321–334 (1963)zbMATHGoogle Scholar
  48. 48.
    Yih, C.S.: Stability of a non-Newtonian liquid film flowing down an inclined plane. Phys. Fluids 8(7), 1257–1262 (1965)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Mécanique des Fluides et d’Acoustique UMR CNRS 5509, École Centrale de Lyon, INSA-Lyon, Université Lyon 1Université de LyonLyonFrance
  2. 2.Department of MathematicsIndian Institute of Technology MadrasChennaiIndia
  3. 3.INSA Euro-MéditerranéeUniversité Euro-Méditerranéenne de FèsFesMorocco
  4. 4.UMR5008, CETHIL, INSA-Lyon, CNRSUniversité de LyonVilleurbanneFrance

Personalised recommendations