Advertisement

Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer

  • A. SurEmail author
  • P. Pal
  • S. Mondal
  • M. Kanoria
Original Paper
  • 23 Downloads

Abstract

Enlightened by the Caputo fractional derivative, the present study treats with a novel mathematical model of generalized thermoelasticity to investigate the transient phenomena for a fiber-reinforced hollow cylinder due to the influence of thermal shock and magnetic field in the context of a three-phase-lag model of generalized thermoelasticity, which is defined in an integral form of a common derivative on a slipping interval by incorporating the memory-dependent heat transfer. Employing Laplace transform as a tool, the problem has been transformed to the space domain, where the Galerkin finite element technique is incorporated to solve the resulting equations in the transformed domain. The inversion of the Laplace transform is carried out numerically on applying a method of Bellman et al. According to the graphical representations corresponding to the numerical results, conclusions about the new theory are constructed. Excellent predictive capability is demonstrated due to the presence of reinforcement, memory-dependent derivative, and magnetic field also.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRefGoogle Scholar
  2. 2.
    Sur, A., Kanoria, M.: Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 173, 875–882 (2017)CrossRefGoogle Scholar
  3. 3.
    Sur, A., Kanoria, M.: Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Euro. J. Comput. Mech. 23, 179–198 (2014)CrossRefGoogle Scholar
  4. 4.
    Das, P., Kanoria, M.: Study of finite thermal waves in a magneto-thermo-elastic rotating medium. J. Therm. Stress. 37, 405–428 (2014)CrossRefGoogle Scholar
  5. 5.
    Das, P., Kar, A., Kanoria, M.: Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J. Therm. Stress. 36, 239–258 (2013)CrossRefGoogle Scholar
  6. 6.
    Sur, A., Pal, P., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J. Therm. Stress. 41(8), 973–992 (2018)CrossRefGoogle Scholar
  7. 7.
    Karmakar, R., Sur, A., Kanoria, M.: Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J. Appl. Mech. Tech. Phys. 57(4), 652–665 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sur, A., Kanoria, M.: Finite thermal wave propagation in a half-space due to variable thermal loading. Appl. Math. 9(1), 94–120 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stress. 30, 231–238 (2007)CrossRefGoogle Scholar
  10. 10.
    Chakravorty, S., Ghosh, S., Sur, A.: Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 173, 851–858 (2017)CrossRefGoogle Scholar
  11. 11.
    Sur, A., Kanoria, M.: Fractional order generalized thermoelastic functionally graded solid with variable material properties. J. Solid Mech. 6, 54–69 (2014)Google Scholar
  12. 12.
    Sur, A., Kanoria, M.: Three dimensional thermoelastic problem under two-temperature theory. Int. J. Comput. Methods 14(03), 1750030 (2017).  https://doi.org/10.1142/S021987621750030X MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Berlin (2010)CrossRefGoogle Scholar
  14. 14.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Roy. Astron. Soc. 3, 529–539 (1967)CrossRefGoogle Scholar
  15. 15.
    Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Rivista el Nuovo cimento. 1, 161–198 (1971)CrossRefGoogle Scholar
  16. 16.
    Sur, A., Kanoria, M.: Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 223, 2685–2701 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Purkait, P., Sur, A., Kanoria, M.: Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. Int. J. Adv. Appl. Math. Mech. 5(1), 28–39 (2017)MathSciNetGoogle Scholar
  18. 18.
    Yu, Y.J., Hu, W., Tian, X.G.: A novel generalized thermoelasticity model based on memory-dependent derivative. Int. J. Eng. Sci. 81, 123–134 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Electro-thermoelasticity theory with memory-dependent derivative heat transfer. Int. J. Eng. Sci. 99, 22–38 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ezzat, M.A., El-Bary, A.A.: Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J. Mech. Sci. Tech. 29, 4273–4279 (2015)CrossRefGoogle Scholar
  21. 21.
    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech. Adv. Mater. Struct. 23, 545–553 (2016)CrossRefGoogle Scholar
  22. 22.
    Ezzat, M.A., El-Karamany, A.S., El-Bary, A.A.: Modeling of memory-dependent derivative in generalized thermoelasticity. Eur. Phys. J. Plus 131, 372 (2016)CrossRefGoogle Scholar
  23. 23.
    Lotfy, K., Sarkar, N.: Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech. Time-Depend. Mater. 21, 519–534 (2017).  https://doi.org/10.1007/s11043-017-9340-5 CrossRefGoogle Scholar
  24. 24.
    Wang, J.L., Li, H.F.: Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput. Math. Appl. 62, 1562–1567 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    El-Karamany, A.S., Ezzat, M.A.: Thermoelastic diffusion with memory-dependent derivative. J. Therm. Stress. 39, 1035–1050 (2016)CrossRefGoogle Scholar
  26. 26.
    Sur, A., Kanoria, M.: Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Walled Struct. 126, 85–93 (2018).  https://doi.org/10.1016/j.tws.2017.05.005 CrossRefGoogle Scholar
  27. 27.
    Chiriţǎ, S., D’Apice, C., Zampoli, V.: The time differential three-phase-lag heat conduction model: thermodynamic compatibility and continuous dependence. Int. J. Heat Mass Transf. 102, 226–232 (2016)CrossRefGoogle Scholar
  28. 28.
    Zampoli, V., Landi, A.: A domain of influence result about the time differential three-phase-lag thermoelastic model. J. Therm. Stress. 40, 108–120 (2017).  https://doi.org/10.1080/01495739.2016.1195242 CrossRefGoogle Scholar
  29. 29.
    Sherief, H.H., Helmy, A.K.: A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int. J. Eng. Sci. 40, 587–604 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Othman, M.I.A.: Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Mult. Model. Mater. Struct. 1, 231–250 (2005)CrossRefGoogle Scholar
  31. 31.
    Othman, M.I.A., Zidan, M.E.M., Hilal, M.I.M.: The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can. J. Phys. 92, 1359–1371 (2014)CrossRefGoogle Scholar
  32. 32.
    Sur, A., Kanoria, M.: Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 127, 605–612 (2015)CrossRefGoogle Scholar
  33. 33.
    Bellman, R., Kolaba, R.E., Lockette, J.A.: Numerical Inversion of the Laplace Transform. American Elsevier, New York (1966)Google Scholar
  34. 34.
    Othman, M.I.A.: Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech. Eng. 14(1), 5–30 (2010)Google Scholar
  35. 35.
    Nowacki, W.: Dynamic Problem of Thermoelasticity, vol. 399. Noordhoff International, Leyden (1975)zbMATHGoogle Scholar
  36. 36.
    Spencer, A.J.M.: Continuum Theory of the Mechanics of Fibre-reinforced Composites. Springer, Berlin. ISBN 978-3-7091-4336-0 (1984)Google Scholar
  37. 37.
    Markham, M.F.: Measurement of the elastic constants of fibre composites by ultrasonics. Composites 1(2), 145–149 (1970)CrossRefGoogle Scholar
  38. 38.
    Dhaliwal, R.S., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, New Delhi (1980)Google Scholar
  39. 39.
    Sur, A., Kanoria, M.: Propagation of thermal waves in a functionally graded thick plate. Math. Mech. Solids. 22, 718–736 (2015)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Quintanilla, R., Racke, R.: A note on stability in three-phase-lag heat conduction. J. Heat. Mass. Transf. 51, 24–29 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations