Telegraph equation: two types of harmonic waves, a discontinuity wave, and a spectral finite element

  • Dansong Zhang
  • Martin Ostoja-StarzewskiEmail author
Original Paper


The telegraph equation \(\tau \partial ^2 u/\partial t^2 + \partial u/ \partial t = \tau c^2 \partial ^2 u / \partial x^2\) arises in studies of waves in dissipative media with a damping coefficient \(1/\tau \), or from a Maxwell–Cattaneo type heat conduction with a relaxation time \(\tau \). To elucidate basic properties of this equation, two harmonic wave solutions are compared: (1) temporally attenuated and spatially periodic (TASP) and (2) spatially attenuated and temporally periodic (SATP). The phase velocities of both waves are equal to the energy velocities and less than the group velocities. The phase velocities of the two waves are different, and less than c, but both naturally lead to a speed c for the propagation of discontinuities. The two harmonic wave solutions are suitable for different initial-boundary value problems: TASP for those with space periodicity and SATP for those with time periodicity. The asymptotic behaviors of the harmonic wave solutions when the telegraph equation transitions into a nondissipative wave equation or into a parabolic diffusion equation are presented. Only the SATP waves survive when the equation turns parabolic. The spectral finite element method is formulated for 1d Maxwell–Cattaneo heat conduction based on the SATP wave solutions. The element thermal conductivity matrix is reduced to that for a conventional (nonspectral) finite element when the frequency tends to zero.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by the NSF under Grants CMMI-1462749 and IIP-1362146.


  1. 1.
    Baldock, G.R., Bridgeman, T.: Mathematical Theory of Wave Motion. Ellis Horwood Ltd, Chichester (1981)zbMATHGoogle Scholar
  2. 2.
    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  3. 3.
    Ostoja-Starzewski, M.: Viscothermoelasticity with finite wave speeds: thermomechanical laws. Acta Mech. 225(4–5), 1277–1285 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ostoja-Starzewski, M., Khayat, R.: Oldroyd fluids with hyperbolic heat conduction. Mech. Res. Commun. 93, 108–113 (2018)CrossRefGoogle Scholar
  5. 5.
    Davidovich, M.: Electromagnetic energy density and velocity in a medium with anomalous positive dispersion. Tech. Phys. Lett. 32(11), 982–986 (2006)CrossRefGoogle Scholar
  6. 6.
    Mainardi, F., Tocci, D., Tampieri, F.: On energy propagation for internal waves in dissipative fluids. Il Nuovo Cimento B (1971–1996) 107(11), 1337–1342 (1992)CrossRefGoogle Scholar
  7. 7.
    Mainardi, F.: Energy velocity for hyperbolic dispersive waves. Wave Motion 9(3), 201–208 (1987)CrossRefGoogle Scholar
  8. 8.
    Christov, C., Jordan, P.: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94(15), 154301 (2005)CrossRefGoogle Scholar
  9. 9.
    Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29(2), 187–204 (1971)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mainardi, F.: On energy velocity of viscoelastic waves. Lettere Al Nuovo Cimento (1971–1985) 6(12), 443–449 (1973)CrossRefGoogle Scholar
  12. 12.
    Tang, Y., Liu, Y., Zhao, D.: Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model. Phys. E 87, 301–307 (2017)CrossRefGoogle Scholar
  13. 13.
    Li, L., Hu, Y., Ling, L.: Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Phys. E 75, 118–124 (2016)CrossRefGoogle Scholar
  14. 14.
    Mainardi, F., Van Groesen, E.: Energy propagation in linear hyperbolic systems. Il Nuovo Cimento B (1971–1996) 104(4), 487–496 (1989)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bland, D.R.: Wave Theory and Applications. Clarendon Press, Oxford (1988)zbMATHGoogle Scholar
  16. 16.
    Gerasik, V., Stastna, M.: Complex group velocity and energy transport in absorbing media. Phys. Rev. E 81(5), 056602 (2010)CrossRefGoogle Scholar
  17. 17.
    Beskos, D., Narayanan, G.: Dynamic response of frameworks by numerical Laplace transform. Comput. Meth. Appl. Mech. Eng. 37(3), 289–307 (1983)CrossRefGoogle Scholar
  18. 18.
    Doyle, J.F.: Wave Propagation in Structures. Springer, New York (1997)CrossRefGoogle Scholar
  19. 19.
    Ostachowicz, W., Kudela, P., Krawczuk, M., Zak, A.: Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method. Wiley, Chichester (2011)zbMATHGoogle Scholar
  20. 20.
    Gopalakrishnan, S., Chakraborty, A., Mahapatra, D.R.: Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer, London (2008)zbMATHGoogle Scholar
  21. 21.
    Baz, A.: Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping. Smart Mater. Struct. 9(3), 372–377 (2000)CrossRefGoogle Scholar
  22. 22.
    Shahsavari, H., Ostoja-Starzewski, M.: Spectral finite element of a helix. Mech. Res. Commun. 32(2), 147–152 (2005)CrossRefGoogle Scholar
  23. 23.
    Ostoja-Starzewski, M., Woods, A.: Spectral finite elements for vibrating rods and beams with random field properties. J. Sound Vib. 268(4), 779–797 (2003)CrossRefGoogle Scholar
  24. 24.
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)CrossRefGoogle Scholar
  25. 25.
    Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Dover Publications, Mineola (2001)zbMATHGoogle Scholar
  26. 26.
    Christov, C.: On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36(4), 481–486 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ostoja-Starzewski, M.: A derivation of the Maxwell–Cattaneo equation from the free energy and dissipation potentials. Int. J. Eng. Sci. 47(7–8), 807–810 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Bland, D.R.: The Theory of Linear Viscoelasticity. Pergamon Press, Oxford (1960)zbMATHGoogle Scholar
  29. 29.
    Polyanin, A.D., Nazaikinskii, V.E.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  30. 30.
    Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21(2), 129–160 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Mechanical Science and Engineering, Beckman Institute, Institute for Condensed Matter TheoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations