Advertisement

Orientation, distribution, and deformation of inertial flexible fibers in turbulent channel flow

  • Diego Dotto
  • Cristian MarchioliEmail author
Original Paper
  • 37 Downloads

Abstract

In this paper, we investigate the dynamics of flexible fibers in turbulent channel flow. Fibers are longer than the Kolmogorov length scale of the carrier flow, and their velocity relative to the surrounding fluid is non-negligible. Our aim is to examine the effect of local shear and turbulence anisotropy on the translational and rotational behavior of the fibers, considering different elongation (parameterized by the aspect ratio, \(\lambda \)) and inertia (parameterized by the Stokes number, St). To these aims, we use a Eulerian–Lagrangian approach based on direct numerical simulation of turbulence in the dilute regime. Fibers are modeled as chains of sub-Kolmogorov rods (referred to as elements hereinafter) connected through ball-and-socket joints that enable bending and twisting under the action of the local fluid velocity gradients. Velocity, orientation, and concentration statistics, extracted from simulations at shear Reynolds number \(Re_{\tau }=150\) (based on the channel half height), are presented to give insights into the complex fiber–turbulence interactions that arise when non-sphericity and deformability add to inertial bias. These statistical observables are examined at varying aspect ratios (namely \(\lambda _{r}=l_{r}/a=2\) and 5, with \(l_{r}\) the semi-length of each rod-like element r composing the fiber and a its cross-sectional radius) and varying fiber inertia (considering values of the element Stokes number, \(St_{r}=1\), 5, 30). To highlight the effect of flexibility, statistics are compared with those obtained for fibers of equal mass that translate and rotate as rigid bodies relative to the surrounding fluid. Flexible fibers exhibit a stronger tendency to accumulate in the very-near-wall region, where they appear to be trapped by the same inertia-driven mechanisms that govern the preferential concentration of spherical particles and rigid fibers in bounded flows. In such region, the bending of flexible fibers increases as inertia decreases, and fiber deformation appears to be controlled by mean shear and turbulent Reynolds stresses. Preferential segregation into low-speed streaks and preferential orientation in the mean flow direction is also observed.

List of symbols

a

Fiber radius

\(\bar{\bar{\mathbf {A}}}\)

Drag force resistance tensor

\(C_{D}\)

Drag coefficient

\(e_{c}\)

Equivalent fiber eccentricity

\(\mathbf {F}^{D}\)

Hydrodynamic drag force

h

Channel half height

\(\mathbf {H}^{D}\)

Hydrodynamic drag torque due to fluid velocity gradients

\(\bar{\bar{\mathbf {J}}}\)

Inertia tensor

\(l_{r}\)

Semi-length of one fiber element

L

End-to-end distance

\(L_{f}\)

Lenght of the entire fiber

\(m_{p}\)

Mass of the fiber

\(\mathcal {N}\)

Number of elements per fiber

\(\mathbf {o}\)

Orientation vector

\(\mathcal {P}\)

Pressure

\(\mathbf {p}\)

Position vector

Re

Reynolds number

St

Stokes number

t

Time

S

Fiber-to-fluid density ratio

\(\mathbf {T}^{D}\)

Hydrodynamic drag torque due to the action of the fluid vorticity on the element

\(\mathbf {u}\)

Fluid velocity

\(\mathbf {v}\)

Fiber velocity

x

Streamwise direction

\(\mathbf {X}\)

Constraint force

y

Spanwise direction

z

Wall-normal direction

Greek letters

\(\alpha \)

Solid angle between neighboring fiber elements

\(\delta _\mathrm{VS}\)

Viscous sublayer thickness

\(\bar{\bar{\varvec{\delta }}}\)

Identity matrix

\(\varDelta t\)

Time step

\(\bar{\bar{\bar{\varvec{\epsilon }}}}\)

Levi-Civita tensor

\(\bar{\bar{\varvec{\gamma }}}\)

Fluid velocity gradient tensor

\(\lambda \)

Aspect ratio

\(\mu \)

Fluid dynamic viscosity

\(\rho \)

Fluid density

\(\nu \)

Fluid kinematic viscosity

\(\varvec{\omega }\)

Fiber angular velocity

\(\varvec{\Omega }\)

Fluid angular velocity

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Andersson, H.I., Zhao, L., Barri, M.: Torque-coupling and particle-turbulence interactions. J. Fluid Mech. 696, 319 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrić, J., Fredriksson, S.T., Lindström, S.B., Sasic, S., Nilsson, H.: A study of a flexible fiber model and its behavior in DNS of turbulent channel flow. Acta Mech. 224, 2359 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Andrić, J., Lindström, S.B., Sasic, S., Nilsson, H.: Rheological properties of dilute suspensions of rigid and flexible fibers. J. Non-Newton. Fluid Mech. 212, 36 (2014)CrossRefGoogle Scholar
  4. 4.
    Boer, L., Buist, K.A., Deen, N.G., Padding, J.T., Kuipers, J.A.M.: Experimental study on orientation and de-mixing phenomena of elongated particles in gas-fluidized beds. Powder Technol. 329, 332 (2018)CrossRefGoogle Scholar
  5. 5.
    Brenner, H., Cox, R.G.: The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17, 561 (1963)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brenner, H.: The Stokes resistance of an arbitrary particle IV. Arbitrary fields of flow. Chem. Eng. Sci. 19, 703 (1964)CrossRefGoogle Scholar
  7. 7.
    Brouzet, C., Verhille, G., Le Gal, P.: Flexible fiber in a turbulent flow: a macroscopic polymer. Phys. Rev. Lett. 112, 074501 (2014)CrossRefGoogle Scholar
  8. 8.
    Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B., Variano, E.: Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101 (2015)CrossRefGoogle Scholar
  9. 9.
    Challabotla, N.R., Zhao, L., Andersson, H.I.: Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)Google Scholar
  11. 11.
    Cox, R.G.: The motion of long slender bodies in a viscous fluid. Part 2. Shear flow. J. Fluid Mech. 45, 625 (1971)CrossRefGoogle Scholar
  12. 12.
    De Lillo, F., Cencini, M., Durham, W.M., Barry, M., Stocker, R., Climent, E., Boffetta, G.: Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 112, 044502 (2014)CrossRefGoogle Scholar
  13. 13.
    Delmotte, B., Climent, E., Plourabouè, F.: A general formulation of bead models applied to flexible fibers and active filaments at low Reynolds number. J. Comput. Phys. 286, 14 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dong, S., Feng, X., Salcudean, M., Gartshore, I.: Concentration of pulp fibers in 3D turbulent channel flow. Int. J. Multiph. Flow 29, 1 (2003)CrossRefGoogle Scholar
  15. 15.
    Do-Quang, M., Amberg, G., Brethouwer, G., Johansson, A.V.: Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006 (2014)CrossRefGoogle Scholar
  16. 16.
    Eshghinejadfard, A., Hosseini, S.A., Thévenin, D.: Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study. AIP Adv. 7, 095007 (2017)CrossRefGoogle Scholar
  17. 17.
    Eshghinejadfard, A., Sharma, K., Thévenin, D.: Effect of polymer and fiber additives on pressure drop in a rectangular channel. J. Hydrodyn. B 29, 871 (2017)CrossRefGoogle Scholar
  18. 18.
    Fan, F.G., Ahmadi, G.: A sublayer model for wall deposition of ellipsoidal particles in turbulent streams. J. Aerosol Sci. 25, 831 (1995)Google Scholar
  19. 19.
    Gallily, I., Cohen, A.H.: On the orderly nature of the motion of non-spherical aerosol particles. II. Inertial collision between a spherical large droplet and axially symmetrical elongated particle. J. Colloid Interface Sci. 68, 338 (1979)CrossRefGoogle Scholar
  20. 20.
    Gustavsson, K., Jucha, J., Naso, A., Lévêque, E., Pumir, A., Mehlig, B.: Statistical model for the orientation of non-spherical particles settling in turbulence. Phys. Rev. Lett. 119, 254501 (2017)CrossRefGoogle Scholar
  21. 21.
    Hich, E.J., Leal, L.G.: Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92, 591 (1979)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Huang, W.X., Shin, S.J., Sung, H.J.: Simulation of flexible filaments in a uniform flow by the immersed boundary method. J. Comput. Phys. 226, 2206 (2007)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jeffery, G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102, 161 (1922)CrossRefGoogle Scholar
  24. 24.
    Joung, C.G., Phan-Thien, N., Fan, X.J.: Direct simulation of flexible fibers. J. Non-Newton. Fluid Mech. 99, 1 (2001)CrossRefGoogle Scholar
  25. 25.
    Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Stoneham (1991)Google Scholar
  26. 26.
    Kunhappan, D., Harthong, B., Chareyre, B., Balarac, G., Dumont, P.J.J.: Numerical modelling of high aspect ratio flexible fibers in inertial flows. Phys. Fluids 29, 093302 (2017)CrossRefGoogle Scholar
  27. 27.
    Lindström, S.B., Uesaka, T.: Particle-level simulation of forming of the fiber network in papermaking. Int. J. Eng. Sci. 46, 858 (2008)CrossRefGoogle Scholar
  28. 28.
    Lindström, S.B., Uesaka, T.: Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 19, 113307 (2007)CrossRefGoogle Scholar
  29. 29.
    Lopez, D., Guazzelli, E.: Inertial effects on fibers settling in a vortical flow. Phys. Rev. Fluids 2, 024306 (2017)CrossRefGoogle Scholar
  30. 30.
    López, H.M., Hulin, J.-P., Auradou, H., D’Angelo, M.V.: Deformation of a flexible fiber in a viscous flow past an obstacle. Phys. Fluids 27, 013102 (2015)CrossRefGoogle Scholar
  31. 31.
    Lovecchio, S., Zonta, F., Marchioli, C., Soldati, A.: Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence. Phys. Fluids 29, 053302 (2017)CrossRefGoogle Scholar
  32. 32.
    Lovecchio, S., Marchioli, C., Soldati, A.: Time persistence of floating particle clusters in free-surface turbulence. Phys. Rev. E 88, 033003 (2013)CrossRefGoogle Scholar
  33. 33.
    Lundell, F., Soderberg, L.D., Alfredsson, P.H.: Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195 (2011)CrossRefGoogle Scholar
  34. 34.
    Marchioli, C.: Large-eddy simulation of turbulent dispersed flows: a review of modelling approaches. Acta Mech. 228, 741 (2017)CrossRefGoogle Scholar
  35. 35.
    Marchioli, C., Zhao, L., Andersson, H.I.: On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28, 013301 (2016)CrossRefGoogle Scholar
  36. 36.
    Marchioli, C., Soldati, A.: Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 2311 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Marchioli, C., Fantoni, M., Soldati, A.: Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22, 033301 (2010)CrossRefGoogle Scholar
  38. 38.
    Marchioli, C., Soldati, A.: Mechanism for particle transfer and segregation in turbulent boundary layer. J. Fluid Mech. 468, 283 (2002)CrossRefGoogle Scholar
  39. 39.
    Martínez, M., Vernet, A., Pallares, J.: Clustering of long flexible fibers in two-dimensional flow fields for different Stokes numbers. Int. J. Heat Mass Transf. 111, 532 (2017)CrossRefGoogle Scholar
  40. 40.
    Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49, 171 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Moffet, R.C., Prater, K.A.: In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl. Acad. Sci. 106, 11872 (2009)CrossRefGoogle Scholar
  42. 42.
    Niazi Ardekani, M., Sardina, G., Brandt, L., Karp-Boss, L., Bearon, R.N., Variano, E.A.: Sedimentation of inertia-less prolate spheroids in homogenous isotropic turbulence with application to non-motile phytoplankton. J. Fluid Mech. 831, 655 (2017)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Niazi Ardekani, M., Costa, P., Breugem, W.-P., Picano, F., Brandt, L.: Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 43 (2017)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Parsa, S., Calzavarini, E., Toschi, F., Voth, G.A.: Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501 (2012)CrossRefGoogle Scholar
  45. 45.
    Pei, Z., Zhang, Y., Zhou, J.: A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flow. J. Fluids Struct. 80, 37 (2018)CrossRefGoogle Scholar
  46. 46.
    Picciotto, M., Marchioli, C., Soldati, A.: Characterization of near-wall accumulation regions for inertial particles in turbulent boundary layers. Phys. Fluids 17, 098101 (2005)CrossRefGoogle Scholar
  47. 47.
    Quennouz, N., Shelley, M., Du Roure, O., Lindner, A.: Transport and buckling dynamics of an elastic fibre in a viscous cellular flow. J. Fluid Mech. 769, 387 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Ravnik, J., Marchioli, C., Soldati, A.: Application limits of Jeffery’s theory for elongated particle torques in turbulence: a DNS assessment. Acta Mech. 229, 827 (2018)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Rosén, T., Do-Quang, M., Aidun, C.K., Lundell, F.: Effect of fluid and particle inertia on the rotation of an oblate spheroidal particle suspended in linear shear flow. Phys. Rev. E 91, 053017 (2015)CrossRefGoogle Scholar
  50. 50.
    Ross, R.F., Klingenberg, D.J.: Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 106, 2949 (1997)CrossRefGoogle Scholar
  51. 51.
    Sabban, L., Cohen, A., van Hout, R.: Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J. Fluid Mech. 814, 42 (2017)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Sabban, L., van Hout, R.: Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosp. Sci. 42, 867 (2011)CrossRefGoogle Scholar
  53. 53.
    Sasayama, T., Inagaki, M.: Simplified bead-chain model for direct fiber simulation in viscous flow. J. Nonnewton. Fluid Mech. 250, 52 (2017)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Schmid, C.F., Switzer III, L.H., Klingenberg, D.J.: Simulations of fiber flocculation: effects of fiber properties and inter-fiber friction. J. Rheol. 44, 781 (2000)CrossRefGoogle Scholar
  55. 55.
    Shams, M., Ahmadi, G., Rahimzadeh, H.: Transport and deposition of flexible fibers in turbulent duct flows. J. Aerosol Sci. 32, 525 (2001)CrossRefGoogle Scholar
  56. 56.
    Shapiro, M., Goldenberg, M.: Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol Sci. 24, 65 (1993)CrossRefGoogle Scholar
  57. 57.
    Slowicka, A.M., Wajnryb, E., Ekiel-Jezewska, M.L.: Dynamics of flexible fibers in shear flow. J. Chem. Phys. 143, 124904 (2015)CrossRefGoogle Scholar
  58. 58.
    Soldati, A., Marchioli, C.: Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiph. Flow 35, 827 (2009)CrossRefGoogle Scholar
  59. 59.
    Stockie, J.M., Green, S.I.: Simulating the motion of flexible pulp fibres using the immersed boundary method. J. Comput. Phys. 147, 398 (1998)CrossRefGoogle Scholar
  60. 60.
    Subramanian, G., Koch, D.L.: Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383 (2005)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Switzer III, L.H., Klingenberg, D.J.: Rheology of sheared flexible fiber suspensions via fiber-level simulations. J. Rheol. 47, 759 (2003)CrossRefGoogle Scholar
  62. 62.
    Tang, Y., Wu, T.-H., He, G.-W., Qi, D.: Multi-flexible fiber flows: a direct-forcing immersed boundary lattice-Boltzmann lattice-spring approach. Int. J. Multiph. Flow 99, 408 (2018)MathSciNetCrossRefGoogle Scholar
  63. 63.
    Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375 (2009)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Vakil, A., Green, S.I.: Flexible fiber motion in the flow field of a cylinder. Int. J. Multiph. Flow 37, 173 (2011)CrossRefGoogle Scholar
  65. 65.
    Verhille, G., Bartoli, A.: 3D conformation of a flexible fiber in a turbulent flow. Exp. Fluids 57, 117 (2016)CrossRefGoogle Scholar
  66. 66.
    Voth, G.A., Soldati, A.: Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249 (2017)MathSciNetCrossRefGoogle Scholar
  67. 67.
    Vreman, A.W.: A staggered overset grid method for resolved simulation of incompressible flow around moving spheres. J. Comput. Phys. 333, 269–296 (2017)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Wang, G., Yu, W., Zhou, C.: Optimization of the rod chain model to simulate the motions of a long flexible fiber in simple shear flows. Eur. J. Mech. B Fluids 44, 337 (2006)CrossRefGoogle Scholar
  69. 69.
    Wu, J., Aidun, C.K.: A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Int. J. Multiph. Flow 36, 202 (2010)CrossRefGoogle Scholar
  70. 70.
    Xiang, P., Kuznetsov, A.V.: Simulation of shape dynamics of a long flexible fiber in a turbulent flow in the hydro-entanglement process. Int. Commun. Heat Mass Transf. 35, 529 (2008)CrossRefGoogle Scholar
  71. 71.
    Yamamoto, S., Matsuoka, T.: A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 98, 644 (1993)CrossRefGoogle Scholar
  72. 72.
    Yuan, W., Andersson, H.I., Zhao, L., Challabotla, N.R., Deng, J.: Dynamics of disk-like particles in turbulent vertical channel flow. Int. J. Multiph. Flow 96, 86 (2017)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Zhao, L., Gustavsson, K., Ni, R., Kramel, S., Voth, G., Andersson, H.I., Mehlig, B.: Orientation patterns of non-spherical particles in turbulence. arXiv:1707.06037v2 [physics.flu-dyn]
  74. 74.
    Zhao, F., van Wachem, B.G.M.: Four-way coupled simulations of small particles in turbulent channel flow: the effects of particle shape and Stokes number. Phys. Fluids 27, 083301 (2015)CrossRefGoogle Scholar
  75. 75.
    Zhao, L., Marchioli, C., Andersson, H.I.: Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26, 063302 (2014)CrossRefGoogle Scholar
  76. 76.
    Zhao, F., George, W.K., van Wachem, B.G.M.: Direct numerical simulation of ellipsoidal particles in turbulent channel flow. Acta Mech. 224, 2331 (2013)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Zhan, C., Sardina, G., Lushi, E., Brandt, L.: Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech. 739, 22 (2014)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Zhang, D., Smith, D.E.: Dynamic simulation of discrete fiber motion in fiber-reinforced composite materials processing. J. Compos. Mater. 50, 1301 (2016)CrossRefGoogle Scholar
  79. 79.
    Zhu, L., Peskin, C.S.: Drag of a flexible fiber in a 2D moving viscous fluid. Comput. Fluids 36, 398 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of UdineUdineItaly
  2. 2.Department of Fluid MechanicsCISMUdineItaly

Personalised recommendations