Acta Mechanica

, Volume 230, Issue 6, pp 2013–2029 | Cite as

An acoustic model of a Helmholtz resonator under a grazing turbulent boundary layer

  • Lewin SteinEmail author
  • Jörn Sesterhenn
Original Paper


Acoustic models of resonant duct systems with turbulent flow depend on fitted constants based on expensive experimental test series. We introduce a new model of a resonant cavity, flush mounted in a duct or flat plate, under grazing turbulent flow. Based on previous work by Goody, Howe and Golliard, we present a more universal model where the constants are replaced by physically significant parameters. This enables the user to understand and to trace back how a modification of design parameters (geometry, fluid condition) will affect acoustic properties. The derivation of the model is supported by a detailed three-dimensional direct numerical simulation as well as an experimental test series. We show that the model is valid for low Mach number flows (\(M=0.01{-}0.14\)) and for low frequencies (below higher transverse cavity modes). Hence, within this range, no expensive simulation or experiment is needed any longer to predict the sound spectrum. In principle, the model is applicable to arbitrary geometries: Just the provided definitions need to be applied to update the significant parameters. Utilizing the lumped-element method, the model consists of exchangeable elements and guarantees a flexible use. Even though the model is linear, resonance conditions between acoustic cavity modes and fluid dynamic unstable modes are correctly predicted.

List of symbols

\(Re_\tau \)

Friction Reynolds number \(u_{\tau } \delta _{99} / \nu =\delta _{99} / \delta _{\nu }\).


Strouhal number of the TBL \(\omega \,\delta _{99}/u_{0}\).


Strouhal number of the neck \(\omega \,L_{x,\mathrm{neck}}/u_{+}\) (Eq. (12)).


Characteristic impedance \(Y=S/\rho c\) of a duct with the constant cross section S.


Complex-valued acoustic impedance \(Z=(r+i k l)Y\).

\(\beta \)

Frequency-dependent tuning of the opening impedance amplitude (Eq. (16)).

\(\delta _\nu \)

Viscous lengthscale \(\nu /u_{\tau }\).

\(\delta _{99,\mathrm{neck}}\)

Boundary layer thickness \(\delta _{99}\) at the neck center (Fig. 1).

\(\delta _{99}\)

Boundary layer thickness \(u(y=\delta _{99})=0.99\,u_{0}\).

\(\tau _w\)

Wall shear stress \(\rho _w \nu \, \mathrm{d}/\mathrm{d}y{<}u_x{>}|_{y=y_w}\).


Acoustic reactance (length correction).


Acoustic resistance (excitation or damping).


Vortex sheet convection velocity (Eq. (15)).


Free stream velocity.

\(u_{\tau }\)

Wall friction velocity \(\sqrt{\tau _{w}/\rho _w}\).


Acoustic volume flux.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (SE824/29-1) and the provision of computational resources by the High-Performance Computing Center Stuttgart (ACID11700).


  1. 1.
    Kook, H., Mongeau, L.: Analysis of the periodic pressure fluctuations induced by flow over a cavity. J. Sound Vib. 251(5), 823–846 (2002)CrossRefGoogle Scholar
  2. 2.
    Golliard, J.: Noise of Helmholtz-resonator like cavities excited by a low Mach-number turbulent flow. Ph.D. thesis, University of Poitiers (2002)Google Scholar
  3. 3.
    Hémon, P., Santi, F., Amandolèse, X.: On the pressure oscillations inside a deep cavity excited by a grazing airflow. Eur. J. Mech. B/Fluids 23(4), 617–632 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Dequand, S., Luo, X., Willems, J., Hirschberg, A.: Helmholtz-like resonator self-sustained oscillations, part 1: acoustical measurements and analytical models. AIAA J. 41(3), 408–415 (2003)CrossRefGoogle Scholar
  5. 5.
    Rossiter, J.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda 3438 (1964)Google Scholar
  6. 6.
    Tam, C., Block, P.: On the tones and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89(02), 373 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Howe, M.S.: The influence of mean shear on unsteady aperture flow, with application to acoustical diffraction and self-sustained cavity oscillations. J. Fluid Mech. 109(–1), 125 (1981)CrossRefzbMATHGoogle Scholar
  8. 8.
    Howe, M.S.: On the theory of unsteady shearing flow over a slot. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 303(1475), 151–180 (1981b)CrossRefzbMATHGoogle Scholar
  9. 9.
    Stein, L., Reiss, J., Sesterhenn, J.: Numerical simulation of a resonant cavity: acoustical response under grazing turbulent flow. New Results Numer. Exp. Fluid Mech. XI 136, 671–681 (2018)CrossRefGoogle Scholar
  10. 10.
    Tam, C., Ju, H., Jones, M., Watson, W., Parrott, T.: A computational and experimental study of slit resonators. J. Sound Vib. 284, 947–984 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Tam, C.K., Ju, H., Jones, M., Watson, W., Parrott, T.: A computational and experimental study of resonators in three dimensions. J. Sound Vib. 329(24), 5164–5193 (2010)CrossRefGoogle Scholar
  12. 12.
    Roche, J.M., Leylekian, L., Delattre, G., Vuillot, F.: Aircraft fan noise absorption: DNS of the acoustic dissipation of resonant liners. In: 30th AIAA Aeroacoustics Conference (2009)Google Scholar
  13. 13.
    Eldredge, J., Bodony, D., Shoeybi, M.: Numerical investigation of the acoustic behavior of a multi-perforated liner. In: 28th AIAA Aeroacoustics Conference. American Institute of Aeronautics and Astronautics (2007)Google Scholar
  14. 14.
    Roche, J., Vuillot, F., Leylekian, L.: Numerical and experimental study of resonant liners aeroacoustic absorption under grazing flow. AIAA Paper 16, 1–18 (2010)Google Scholar
  15. 15.
    Munjal, M.L.: Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design. Wiley, New York (1987)Google Scholar
  16. 16.
    Goody, M.: Empirical spectral model of surface pressure fluctuations. AIAA J. 42(9), 1788–1794 (2004)CrossRefGoogle Scholar
  17. 17.
    Hwang, Y., Bonness, W.K., Hambric, S.A.: Comparison of semi-empirical models for turbulent boundary layer wall pressure spectra. J. Sound Vib. 319(1–2), 199–217 (2009)CrossRefGoogle Scholar
  18. 18.
    Chase, D.: The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. J. Sound Vib. 112(1), 125–147 (1987)CrossRefGoogle Scholar
  19. 19.
    Howe, M.S.: Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Grace, S.M., Horan, K.P., Howe, M.S.: The influence of shape on the Rayleigh conductivity of a wall aperture in the presence of grazing flow. J. Fluids Struct. 12(3), 335–351 (1998)CrossRefGoogle Scholar
  21. 21.
    Peat, K.S., Ih, J.G., Lee, S.H.: The acoustic impedance of a circular orifice in grazing mean flow: comparison with theory. J. Acoust. Soc. Am. 114(6), 3076–3086 (2003)CrossRefGoogle Scholar
  22. 22.
    Blake, W.K.: Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid Mech. 44(04), 637 (1970)CrossRefGoogle Scholar
  23. 23.
    Alamo, J.C., Jiménez, J.: Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 5 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Goldschmidt, V.W., Young, M.F., Ott, E.S.: Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J. Fluid Mech. 105(–1), 327 (1981)CrossRefGoogle Scholar
  25. 25.
    Viazzo, S., Dejoan, A., Schiestel, R.: Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using LES. Int. J. Heat Fluid Flow 22(1), 39–52 (2001)CrossRefGoogle Scholar
  26. 26.
    Gloerfelt, X., Berland, J.: Turbulent boundary-layer noise: direct radiation at Mach number 0.5. J. Fluid Mech. 723, 318–351 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hu, N., Appel, C., Herr, M., Ewert, R., Reiche, N.: Numerical study of wall pressure fluctuations for zero and non-zero pressure gradient turbulent boundary layers. In: 22nd AIAA/CEAS Aeroacoustics Conference (2016)Google Scholar
  28. 28.
    Arguillat, B., Ricot, D., Bailly, C., Robert, G.: Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. J. Acoust. Soc. Am. 128, 1647–1655 (2010)CrossRefGoogle Scholar
  29. 29.
    Kim, J., Hussain, F.: Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A Fluid Dyn. 5(3), 695–706 (1993)CrossRefGoogle Scholar
  30. 30.
    Schmid, P.J.: Stability and Transition in Shear Flows. Springer, Berlin (2012)Google Scholar
  31. 31.
    Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  32. 32.
    Yang, Y., Rockwell, D., Lai-Fook Cody, K., Pollack, M.: Generation of tones due to flow past a deep cavity: effect of streamwise length. J. Fluids Struct. 25(2), 364–388 (2009)CrossRefGoogle Scholar
  33. 33.
    Förner, K., Tournadre, J., Martinez-Lera, P., Polifke, W.: Scattering to higher harmonics for quarter wave and Helmholtz resonators. AIAA J. 55(4), 1194–1204 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Strömungsmechanik und Technische Akustik, Technische Universität BerlinBerlinGermany

Personalised recommendations