Advertisement

Acta Mechanica

, Volume 230, Issue 2, pp 381–386 | Cite as

Special issue on finite-size particles, drops and bubbles in fluid flows: advances in modelling and simulations

  • Cristian MarchioliEmail author
  • Stéphane Vincent
Editorial
  • 54 Downloads

Notes

References

  1. 1.
    Andersson, H.I., Jiang, F.-J.: Forces and torques on a prolate spheroid: low-Reynolds number and attack angle effects. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2325-x
  2. 2.
    Abdol Azis, H., Evrard, F., van Wachem, B.: An immersed boundary method for flows with dense particle suspensions. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2296-y
  3. 3.
    Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010)CrossRefzbMATHGoogle Scholar
  4. 4.
    Chadil, M.A., Vincent, S., Estivalezes, J.-L.: Accurate estimate of drag forces using particle-resolved direct numerical simulations. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2305-1
  5. 5.
    Chouippe, A., Uhlmann, M.: On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2271-7
  6. 6.
    Compère, G., Marchandise, E., Remacle, J.-F.: Transient adaptivity applied to two-phase incompressible flows. J. Comput. Phys. 227, 1923–1942 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Derksen, J.J., Komrakova, A.E.: Multiscale simulations of sliding droplets. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2264-6
  8. 8.
    Deville, M.O., Couaillier, V., Estivalezes, J.-L., Lê, T.-H., Vincent, S.: Turbulence and Interactions: Proceedings of the TI 2015 conference, June 11-14, 2015, Cargèse, Corsica, France, volume 135. to appear in Notes on Numerical Fluid MEchanics and Multidisciplinary Design, Springer (2018)Google Scholar
  9. 9.
    Deville, M.O., Couaillier, V., Estivalezes, J.-L., Lê, T.-H., Vincent, S.: Turbulence and Interactions: Proceedings of the TI 2018 conference, June 25-29, 2018, Les Trois-Ilets, MArtinique, French West Indies, France. To appear in Notes on Numerical Fluid MEchanics and Multidisciplinary Design, Springer (2020)Google Scholar
  10. 10.
    Dotto, D., Marchioli, C.: Orientation, distribution and deformation of inertial flexible fibers in turbulent channel flow. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2355-4
  11. 11.
    Fornari, W., Zade, S., Brandt, L., Picano, F.: Settling of finite-size particles in turbulence at different volume fractions. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2269-1
  12. 12.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow with fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Heitkam, S., Fröhlich, J.: Phase-resolving simulation of dense bubble clusters under periodic shear. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2270-8
  14. 14.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (vof) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kataoka, I.: Local instant formulation of two-phase flow. Int. J. Multiph. Flow 12, 745–758 (1986)CrossRefzbMATHGoogle Scholar
  16. 16.
    Li, R.-Y., Cui, Z.-W., Huang, W.-X., Zhao, L.-H., Xu, C.-X.: On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2295-z
  17. 17.
    Li, R.-Y., Xie, C.-H., Huang, W.-X., Xu, C.-X.: An efficient immersed boundary projection method for flow over complex/moving boundaries. Comput. Fluids 140, 122–135 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, M., Bothe, D.: Towards the predictive simulation of bouncing versus coalescence in binary droplet collisions. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2290-4
  19. 19.
    Maury, B.: Direct simulations of 2d fluid-particle flows in biperiodic domains. J. Comput. Phys. 156, 325–351 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Peng, C., Wang, L.-P.: Direct numerical simulations of turbulent pipe flow laden with finite-size neutrally-buoyant particles at low flow Reynolds number. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2268-2
  22. 22.
    Rosti, M.E., De Vita, F., Brandt, L.: Numerical simulations of emulsions in shear flows. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2265-5
  23. 23.
    Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Soligo, G., Roccon, A., Soldati, A.: Mass conservation improved phase field methods for turbulent multiphase flow simulation. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2304-2
  25. 25.
    Tavanashad, V., Passalacqua, A., Fox, R.O., Subramaniam, S.: Effect of density ratio on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2267-3
  26. 26.
    Thiam, E.I., Masi, E., Climent, E., Simonin, O., Vincent, S.: Particle-resolved numerical simulations of the gas-solid heat transfer in arrays of random motionless particles. Acta Mech. (2019).  https://doi.org/10.1007/s00707-018-2346-5
  27. 27.
    Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)CrossRefzbMATHGoogle Scholar
  28. 28.
    Vincent, S., De Motta, J.C.B., Sarthou, A., Estivalezes, J.-L., Simonin, O., Climent, E.: A Lagrangian VOF tensorial penalty method for the DNS of resolved particle-laden flows. J. Comput. Phys. 256, 582–614 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Youngs, D.: Time-dependent multi-material flow with large fluid distortion. Numer. Methods Fluid Dyn. 24(2), 273–285 (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of UdineUdineItaly
  2. 2.Department of Fluid MechanicsCISMUdineItaly
  3. 3.Université Paris-Est Marne-la-ValléeParisFrance

Personalised recommendations