Advertisement

Dynamic collapse of metal self-similar hierarchical corrugated sandwich plates

  • Jianxun Zhang
  • Yang Ye
  • Yuan Zhu
  • Qinghua QinEmail author
  • T. J. WangEmail author
Original Paper
  • 38 Downloads

Abstract

The dynamic collapse response of metal self-similar hierarchical corrugated sandwich plates is analyzed. The analytical model is derived for the reaction forces of the top and bottom face sheets. Finite element analysis is conducted to investigate the dynamic collapse of the self-similar hierarchical corrugated sandwich cores. Collapse modes of cores are found compressed at different impact velocities. The analytical model captures the average reaction forces reasonably. The collapse mechanism maps are constructed with axes representing the slenderness ratio of the big and small struts for hierarchical corrugated sandwich cores and are in good agreement with numerical results. The results reveal that the increase in the velocity changes the dominant deformation modes of the collapse mechanism maps. The region of Euler buckling of small struts increases with increasing velocity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for financial support from NSFC (11502189, 11572234 and 11872291), Natural Science Basic Research Plan in Shaanxi Province of China (2017JM1020), and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Li, X., Li, S.Q., Wang, Z.H., Yang, J.L., Wu, G.Y.: Response of aluminum corrugated sandwich panels under foam projectile impact—experiment and numerical simulation. J. Sandw. Struct. Mater. 19(5), 595–615 (2017)CrossRefGoogle Scholar
  2. 2.
    Ashby, M.F., Evans, A.G., Fleck, N.A., Hutchinson, J.W., Gibson, L.J., Wadley, H.N.G.: Metal Foams: A Design Guide. Butterworth-Heinemann, Oxford (2000)Google Scholar
  3. 3.
    Zhu, F., Zhao, L.M., Lu, G.X., Wang, Z.H.: Deformation and failure of blast-loaded metallic sandwich panels—experimental investigations. Int. J. Impact Eng. 35, 937–951 (2008)CrossRefGoogle Scholar
  4. 4.
    Sun, G.Y., Huo, X.T., Chen, D.D., Li, Q.: Experimental and numerical study on honeycomb sandwich panels under bending and in-panel compression. Mater. Des. 133, 154–168 (2017)CrossRefGoogle Scholar
  5. 5.
    Sun, G.Y., Chen, D.D., Huo, X.T., Zheng, G., Li, Q.: Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels. Compos. Struct. 184, 110–124 (2018)CrossRefGoogle Scholar
  6. 6.
    Xiao, X.L., Mu, L., Zhao, G.P.: An analytical modeling for indentation response of sandwich panels with gradient foam cores. Acta Mech. 229, 33–46 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhang, J.X., Qin, Q.H., Xiang, C.P., Wang, T.J.: Plastic analysis of multilayer sandwich beams with metal foam cores. Acta Mech. 227(9), 1–15 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yang, J.S., Xiong, J., Ma, L., Feng, L.N., Wang, S.Y., Wu, L.Z.: Modal response of all-composite corrugated sandwich cylindrical shells. Compos. Sci. Technol. 115, 9–20 (2015)CrossRefGoogle Scholar
  9. 9.
    Xiong, J., Ghosh, R., Ma, L., Ebrahimi, H., Hamouda, A.M.S., Vaziri, A., Wu, L.Z.: Bending behavior of lightweight sandwich-walled shells with pyramidal truss cores. Compos. Struct. 116(1), 793–804 (2014)CrossRefGoogle Scholar
  10. 10.
    Cui, X.D., Zhao, L.M., Wang, Z.H., Zhao, H., Fang, D.N.: Dynamic response of metallic lattice sandwich structures to impulsive loading. Int. J. Impact Eng. 43, 1–5 (2012)CrossRefGoogle Scholar
  11. 11.
    Fan, H.L., Yang, W., Zhou, Q.: Experimental research of compressive responses of multi-layered woven textile sandwich panels under quasi-static loading. Compos. Part B Eng. 42, 1151–1156 (2011)CrossRefGoogle Scholar
  12. 12.
    Fleck, N.A., Deshpande, V.S.: The resistance of clamped sandwich beams to shock loading. J. Appl. Mech. ASME 71(3), 386–401 (2004)CrossRefGoogle Scholar
  13. 13.
    Kooistra, G.W., Deshpande, V.S., Wadley, H.N.G.: Hierarchical corrugated core sandwich panel concepts. J. Appl. Mech. ASME 74(2), 259–268 (2007)CrossRefGoogle Scholar
  14. 14.
    Tilbrook, M., Radford, D., Deshpande, V.S., Fleck, N.A.: Dynamic crushing of sandwich panels with prismatic lattice cores. Int. J. Solids Struct. 44(18), 6101–6123 (2007)CrossRefGoogle Scholar
  15. 15.
    Côté, F., Deshpande, V.S., Fleck, N.A., Evans, A.G.: The compressive and shear responses of corrugated and diamond lattice materials. Int. J. Solids Struct. 43(20), 6220–6242 (2006)CrossRefGoogle Scholar
  16. 16.
    McShane, G.J., Pingle, S.M., Deshpande, V.S., Fleck, N.A.: Dynamic buckling of an inclined strut. Int. J. Solids Struct. 49(19–20), 2830–2838 (2012)CrossRefGoogle Scholar
  17. 17.
    Sun, F.F., Lai, C.L., Fan, H.L., Fang, D.N.: Crushing mechanism of hierarchical lattice structure. Mech. Mater. 97, 164–183 (2016)CrossRefGoogle Scholar
  18. 18.
    Yin, S., Wu, L.Z., Nutt, S.: Stretch-bend-hybrid hierarchical composite pyramidal lattice cores. Compos. Struct. 98, 153–159 (2013)CrossRefGoogle Scholar
  19. 19.
    Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A., Vaziri, A.: Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113, 104301 (2014)CrossRefGoogle Scholar
  20. 20.
    Wu, Q.Q., Gao, Y., Wei, X.Y., Mousanezhad, D., Ma, L., Vaziri, A., Xiong, J.: Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores. Int. J. Solids Struct. 132–133, 171–187 (2018)CrossRefGoogle Scholar
  21. 21.
    Li, G., Fang, Y.C., Hao, P., Li, Z.K.: Three-point bending deflection and failure mechanism map of sandwich beams with second-order hierarchical corrugated truss core. J. Sandw. Struct. Mater. 19(1), 83–107 (2017)CrossRefGoogle Scholar
  22. 22.
    Fang, J., Sun, G.Y., Qiu, N., Pang, T., Li, S.F., Li, Q.: On hierarchical honeycombs under out-of-plane crushing. Int. J. Solids Struct. 135, 1–13 (2018)CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Lu, M.H., Wang, C.H., Sun, G.Y., Li, G.Y.: Out-of-plane crashworthiness of bio-inspired self-similar regular hierarchical honeycombs. Compos. Struct. 144, 1–13 (2016)CrossRefGoogle Scholar
  24. 24.
    An, L.Q., Zhang, X.C., Wu, H.X., Jiang, W.Q.: In-plane dynamic crushing and energy absorption capacity of self-similar hierarchical honeycombs. Adv. Mech. Eng. 9(6), 1–15 (2017)CrossRefGoogle Scholar
  25. 25.
    Li, D., Yin, J.H., Dong, L., Lakes, R.S.: Numerical analysis on mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio. Smart Mater. Struct. 26, 025014 (2017)CrossRefGoogle Scholar
  26. 26.
    Sun, G.Y., Jiang, H., Fang, J.G., Li, G.Y., Li, Q.: Crashworthiness of vertex based hierarchical honeycombs in out-of-plane impact. Mater. Des. 110, 705–719 (2016)CrossRefGoogle Scholar
  27. 27.
    Vaughn, D.G., Hutchinson, J.W.: Bucklewaves. Eur. J. Mech. A 25(1), 1–12 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vaughn, D.G., Canning, J.M., Hutchinson, J.W.: Coupled plastic wave propagation and column buckling. J. Appl. Mech. ASME 72(1), 139–146 (2005)CrossRefGoogle Scholar
  29. 29.
    Langdon, G.S., Schleyer, G.K.: Unusual strain rate sensitive behaviour of AISI 316L austenitic stainless steel. J. Strain Anal. 39(1), 71–86 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations