Advertisement

Solutions of the elastic fields in a half-plane region containing multiple inhomogeneities with the equivalent inclusion method and the applications to properties of composites

  • Xiangxin Dang
  • Yingjie Liu
  • Linjuan WangEmail author
  • Jianxiang Wang
Original Paper
  • 20 Downloads

Abstract

This paper presents a solution of the elastic fields of a half-plane composite structure containing distributed multiple circular inhomogeneities under boundary loading. The solution is obtained with a semi-analytical approach by combining the Green’s function and the equivalent inclusion method. This approach can achieve high accuracy and can be easily implemented with less computational effort compared with other numerical methods. Then, this solution is further used to explore the boundary effects on the elastic fields and effective elastic properties of the half-plane composite structure containing square periodically distributed circular inhomogeneities. Influences of the boundary and the inhomogeneity volume fraction on the elastic fields are examined in detail. Local effective elastic constants of the composite structure are predicted using the unit cells. The results show that the boundary has a significant effect on the elastic fields and elastic properties of the half-plane composite structure. The average displacement predicted with the conventional effective elastic constants of unit cells may deviate from the real value. Thus, we propose a design of a composite structure with a uniform elastic constant and develop an analytical model to calculate the average displacement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

X. Dang, L. J. Wang and J. Wang thank the support of the National Natural Science Foundation of China under Grant Nos. 11872075 and 11521202.

References

  1. 1.
    Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Richardson, M.K.: Interference stresses in a half plane containing an elastic disk of the same material. J. Appl. Mech. 36, 128–130 (1969)CrossRefGoogle Scholar
  3. 3.
    Saleme, E.M.: Stress distribution around a circular inclusion in a semi-infinite elastic plate. J. Appl. Mech. 25, 129–135 (1958)zbMATHGoogle Scholar
  4. 4.
    Shioya, S.: On a semi-infinite thin plate with a circular inclusion under uniform tension. Bull. Jpn. Soc. Mech. Eng. 10, 1–9 (1967)CrossRefGoogle Scholar
  5. 5.
    Lee, M., Jasiuk, I., Tsuchida, E.: The sliding circular inclusion in an elastic half-plane. J. Appl. Mech. 59, 57–64 (1992)CrossRefGoogle Scholar
  6. 6.
    Al-Ostaz, A., Jasiuk, I., Lee, M.: Circular inclusion in half-plane: effect of boundary conditions. J. Eng. Mech. 124, 293–300 (1998)CrossRefGoogle Scholar
  7. 7.
    Furuhashi, R., Huang, J.H., Mura, T.: Sliding inclusions and inhomogeneities with frictional interfaces. J. Appl. Mech. 59, 783–788 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ru, C.Q.: Analytic solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. J. Appl. Mech. 66, 315–322 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ru, C.Q.: Eshelby inclusion of arbitrary shape in an anisotropic plane or half-plane. Acta Mech. 160(3–4), 219–234 (2003)CrossRefGoogle Scholar
  10. 10.
    Sun, Y.F., Peng, Y.Z.: Analytic solutions for the problems of an inclusion of arbitrary shape embedded in a half-plane. Appl. Math. Comput. 140, 105–113 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Zou, W., Lee, Y.: Completely explicit solutions of Eshelby’s problems of smooth inclusions embedded in a circular disk, full- and half-planes. Acta Mech. 229(5), 1911–1926 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dong, C.Y., Lo, S.H., Cheung, Y.K.: Numerical solution for elastic half-plane inclusion problems by different integral equation approaches. Eng. Anal. Bound. Elem. 28, 123–130 (2004)CrossRefGoogle Scholar
  13. 13.
    Legros, B., Mogilevskaya, S.G., Crouch, S.L.: A boundary integral method for multiple circular inclusions in an elastic half-plane. Eng. Anal. Bound. Elem. 28, 1083–1098 (2004)CrossRefGoogle Scholar
  14. 14.
    Lee, J., Ku, D., Mal, A.: Elastic analysis of a half-plane with multiple inclusions using volume integral equation method. Eng. Anal. Bound. Elem. 35, 564–574 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kushch, V.I., Shmegera, S.V., Buryachenko, V.A.: Elastic equilibrium of a half plane containing a finite array of elliptic inclusions. Int. J. Solids Struct. 43, 3459–3483 (2006)CrossRefGoogle Scholar
  16. 16.
    Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. A 252, 561–569 (1959)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Takao, Y., Chou, T.W., Taya, M.: Effective longitudinal Young’s modulus of misoriented short fiber composites. J. Appl. Mech. 49, 536–540 (1982)CrossRefGoogle Scholar
  18. 18.
    Chen, C., Cheng, C.: Effective elastic moduli of misoriented short-fiber composites. Int. J. Solids Struct. 33, 2519–2539 (1996)CrossRefGoogle Scholar
  19. 19.
    Yin, H.M., Buttlar, W.G., Paulino, G.H., Di Benedetto, H.: Assessment of existing micromechanical models for asphalt mastics considering viscoelastic effects. Road Mater. Pavement 9, 31–57 (2008)CrossRefGoogle Scholar
  20. 20.
    Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993)CrossRefGoogle Scholar
  21. 21.
    Hatta, H., Taya, M.: Equivalent inclusion method for steady state heat conduction in composites. Int. J. Eng. Sci. 24, 1159–1172 (1986)CrossRefGoogle Scholar
  22. 22.
    Yin, H.M., Paulino, G., Buttlar, W.G., Sun, L.Z.: Effective thermal conductivity of two-phase functionally graded particulate composites. J. Appl. Phys. 98, 607–644 (2005)CrossRefGoogle Scholar
  23. 23.
    Yin, H.M., Paulino, G., Buttlar, W.G., Sun, L.Z.: Effective thermal conductivity of graded nanocomposites with interfacial thermal resistance. J. Appl. Mech. 75, 321–326 (2008)CrossRefGoogle Scholar
  24. 24.
    Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate-filled composites I: single reinforcing phase. Mat. Sci. Eng. A 131, 133–143 (1991)CrossRefGoogle Scholar
  25. 25.
    Takei, T., Hatta, H., Taya, M.: Thermal expansion behavior of particulate-filled composites II: multi-reinforcing phases (hybrid composites). Mat. Sci. Eng. A 131, 145–152 (1991)CrossRefGoogle Scholar
  26. 26.
    Yin, H.M., Paulino, G., Buttlar, W., Sun, L.Z.: Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions. J. Mech. Phys. Solids 55, 132–160 (2007)CrossRefGoogle Scholar
  27. 27.
    Sakata, S., Ashida, F., Kojima, T.: Stochastic homogenization analysis for thermal expansion coefficients of fiber reinforced composites using the equivalent inclusion method with perturbation-based approach. Comput. Struct. 88, 458–466 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)CrossRefGoogle Scholar
  29. 29.
    Liu, Y.J., Yin, H.M.: Equivalent inclusion method-based simulation of particle sedimentation toward functionally graded material manufacturing. Acta Mech. 225(4–5), 1429–1445 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Yang, J., Fan, Q., Zeng, L., Keer, L.M., Zhou, K.: On the plastic zone sizes of cracks interacting with multiple inhomogeneous inclusions in an infinite space. Acta Mech. 229(2), 497–514 (2018)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Eshelby formalism for nanoinhomogeneities. Proc. R. Soc. Lond. A 461, 3335–3353 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Duan, H.L., Yi, X., Huang, Z.P., Wang, J.: Eshelby equivalent inclusion method for composites with interface effects. Key Eng. Mater. 312, 161–166 (2006)CrossRefGoogle Scholar
  33. 33.
    Chen, Y.Q., Huang, R.C., Huang, Z.P.: Effect of residual interface stresses on effective specific heats of multiphase thermoelastic nanocomposites. Acta Mech. 225(4–5), 1107–1119 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Xiao, X.Z., Song, D.K., Xue, J.M., Chu, H.J., Duan, H.L.: A self-consistent plasticity theory for modeling the thermo-mechanical properties of irradiated FCC metallic polycrystals. J. Mech. Phys. Solids 78, 1–16 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Chiang, C.R.: Eshelby’s tensor of a cubic piezoelectric crystal under plane strain condition and its application to elliptic cavity problems. Acta Mech. 228(2), 595–606 (2017)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Mura, T.: Micromechanics of Defects in Solids. Kluwer, Dordrecht (1987)CrossRefGoogle Scholar
  37. 37.
    Liu, Y.J., Song, G., Yin, H.M.: Boundary effect on the elastic field of a semi-infinite solid containing inhomogeneities. Proc. R. Soc. Lond. A 471, 20150174 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Luciano, R., Willis, J.R.: Boundary-layer corrections for stress and strain fields in randomly heterogeneous materials. J. Mech. Phys. Solids 51, 1075–1088 (2003)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Trias, D., Costa, J., Mayugo, J.A., Hurtado, J.E.: Random models versus periodic models for fiber reinforced composites. Comput. Mater. Sci. 38, 316–324 (2006)CrossRefGoogle Scholar
  40. 40.
    Harper, L.T., Qian, C., Turner, T.A., Li, S., Warrior, N.A.: Representative volume elements for discontinuous carbon fibre composites. Part 1: boundary conditions. Compos. Sci. Technol. 72, 225–234 (2012)CrossRefGoogle Scholar
  41. 41.
    Melan, E.: Der Spannungszustand der durch eine einzelkraft im innern beanspruchten halbscheibe. Z. Angew. Math. Mech. 12, 343–346 (1932). (in German) CrossRefGoogle Scholar
  42. 42.
    Wang, M.Z.: Advanced Elasticity. Peking University, Beijing (2002). (in Chinese) Google Scholar
  43. 43.
    Mori, T., Tanaka, K.: Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)CrossRefGoogle Scholar
  44. 44.
    Tandon, G.P., Weng, G.J.: Average stress in the matrix and effective moduli of randomly oriented composites. Compos. Sci. Technol. 27, 111–132 (1986)CrossRefGoogle Scholar
  45. 45.
    Halpin, J.C., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)CrossRefGoogle Scholar
  46. 46.
    Silling, S.: Origin and effect of nonlocality in a composite. J. Mech. Mater. Struct. 9, 245–258 (2014)CrossRefGoogle Scholar
  47. 47.
    Wang, L.J., Xu, J., Wang, J.: Static and dynamic Green’s functions in peridynamics. J. Elast. 126, 95–125 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina
  2. 2.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA

Personalised recommendations