On the nanoscale behaviour of single-wall C, BN and SiC nanotubes

  • Alessandra GenoeseEmail author
  • Andrea Genoese
  • Ginevra Salerno
Original Paper


The paper presents a numerical study of defect-free single-wall carbon, boron nitride and silicon carbide armchair and zigzag nanotubes, through a simple stick-and-spring model, based on Morse and cosine potential functions. The study investigates the relaxed configuration of the tubes and gives a comprehensive evaluation of their elastic constants, which is performed by framing tensile, torsional and radial tests within the membrane behaviour of a Donnell thin shell model. Extensive comparisons with reference ab-initio results are given and used to refine some parameters of the potential functions for hexagonal silicon carbide nanomaterials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Choi, W., Lahiri, I., Seelaboyina, R., Kang, Y.S.: Synthesis of graphene and its applications: a review. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)CrossRefGoogle Scholar
  2. 2.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  3. 3.
    Sun, C., Wen, B., Bai, B.: Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci. Bull. 60, 1807–1823 (2015)CrossRefGoogle Scholar
  4. 4.
    Nguyen, B.H., Nguyen, V.H.: Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 023002 (2016)CrossRefGoogle Scholar
  5. 5.
    Ates, M., Eker, A.A., Eker, B.: Carbon nanotube-based nanocomposites and their applications. J. Adhes. Sci. Technol. 31, 1977–1997 (2017)CrossRefGoogle Scholar
  6. 6.
    Kumar, R., Singh, R., Hui, D., Feo, L., Fraternali, F.: Graphene as biomedical sensing element: state of art review and potential engineering applications. Compos. B Eng. 134, 193–206 (2018)CrossRefGoogle Scholar
  7. 7.
    Mohan, V.B., Lau, K.-T., Hui, D., Bhattacharyya, D.: Graphene-based materials and their composites: a review on production, applications and product limitations. Compos. B Eng. 142, 200–220 (2018)CrossRefGoogle Scholar
  8. 8.
    Chopra, N.G., Luyken, R.J., Cherry, K., Crespi, V.H., Cohen, M.L., Louie, S.G., et al.: Boron nitride nanotubes. Science 269, 966–967 (1995)CrossRefGoogle Scholar
  9. 9.
    Sun, X.H., Li, C.P., Wong, W.K., Wong, N.B., Lee, C.S., Lee, S.T., et al.: Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem. Soc. 124, 14464–14471 (2002)CrossRefGoogle Scholar
  10. 10.
    Pacilé, D., Meyer, J.C., Girit, Ç.Ö., Zettl, A.: The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membrane. Appl. Phys. Lett. 92, 133107 (2008)CrossRefGoogle Scholar
  11. 11.
    Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., et al.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)CrossRefGoogle Scholar
  12. 12.
    Lin, S.S.: Light-emitting two-dimensional ultrathin silicon carbide. J. Phys. Chem. C 116, 3951–3955 (2012)CrossRefGoogle Scholar
  13. 13.
    Casady, J.B., Johnson, R.W.: Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high temperature applications: a review. Solid State Electron. 39, 1409–1422 (1996)CrossRefGoogle Scholar
  14. 14.
    Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., Bando, Y.: Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett. 84, 2527 (2004)CrossRefGoogle Scholar
  15. 15.
    Falin, A., Cai, Q., Santos, E.J.G., Scullion, D., Qian, D., Zhang, R., et al.: Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017)CrossRefGoogle Scholar
  16. 16.
    Ouyang, T., Chen, Y., Xie, Y., Yang, K., Bao, Z., Zhong, J.: Thermal transport in hexagonal boron nitride nanoribbons. Nanotechnology 21, 245701 (2010)CrossRefGoogle Scholar
  17. 17.
    Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., et al.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979–2993 (2010)CrossRefGoogle Scholar
  18. 18.
    Kakay, S., Yilmaz, Z., Sen, O., Emanet, M., Kazanc, E., Çulha, M.: Synthesis of boron nitride nanotubes and their applications. Beilstein J. Nanotechnol. 6, 84–102 (2015)CrossRefGoogle Scholar
  19. 19.
    Kumar, R., Parashar, A.: Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review. Nanoscale 8, 22–49 (2016)CrossRefGoogle Scholar
  20. 20.
    Li, Q., Liu, M., Zhang, Y., Liu, Z.: Hexagonal boron nitride–graphene heterostructures: synthesis and interfacial properties. Small 12, 32–50 (2016)CrossRefGoogle Scholar
  21. 21.
    Mpourmpakis, G., Froudakis, G.E., Lithoxoos, G.P., Samios, J.: SiC nanotubes: a novel material for hydrogen storage. Nano Lett. 6, 1581–1583 (2006)CrossRefGoogle Scholar
  22. 22.
    Zhang, G., Zhang, Y.-W.: Strain effects on thermoelectric properties of two-dimensional materials. Mech. Mater. 91, 382–398 (2015)CrossRefGoogle Scholar
  23. 23.
    Shima, H.: Buckling of carbon nanotubes: a state of art review. Materials 5, 47–84 (2012)CrossRefGoogle Scholar
  24. 24.
    Akinwande, D., Brennan, C.J., Scott Bunch, J., Egberts, P., Felts, J.R., Gao, H., et al.: A review on mechanics and mechanical properties of 2D materials-graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017)CrossRefGoogle Scholar
  25. 25.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)CrossRefGoogle Scholar
  26. 26.
    Sánchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejón, P.: Ab-initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 59, 678–688 (1999)CrossRefGoogle Scholar
  27. 27.
    Kudin, K.N., Scuseria, G.E., Yakobson, B.I.: \(\text{ C }_2\)F, BN, and C nanoshell elasticity from ab-initio computations. Phys. Rev. B 64, 235406 (2001)CrossRefGoogle Scholar
  28. 28.
    Machón, M., Reich, S., Thomsen, C., Sánchez-Portal, D., Ordejón, P.: Ab-initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes. Phys. Rev. B 66, 155410–5 (2002)CrossRefGoogle Scholar
  29. 29.
    Cabria, I., Mintmire, J.W., White, C.T.: Metallic and semiconducting narrow carbon nanotubes. Phys. Rev. B 67, 121406(R) (2003)CrossRefGoogle Scholar
  30. 30.
    Popov, V.N.: Curvature effects on the structural, electronic and optical properties of isolated single-walled nanotubes within a symmetry-adapted non-orthogonal tight-binding model. New J. Phys. 6, 1–18 (2004)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Bogár, F., Mintmire, J.W., Bartha, F., Mezö, T., Van Alsenoy, C.: Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys. Rev. B 72, 085452 (2005)CrossRefGoogle Scholar
  32. 32.
    Jia, J.-F., Wu, H.-S., Jiao, H.: The structure and electronic property of BN nanotube. Physica B 381, 90–95 (2006)CrossRefGoogle Scholar
  33. 33.
    Zhao, M., Xia, Y., Li, F., Zhang, R.Q., Lee, S.-T.: Strain energy and electronic structures of silicon carbide nanotubes: density functional calculations. Phys. Rev. B 71, 085312 (2005)CrossRefGoogle Scholar
  34. 34.
    Baumeier, B., Krüger, P., Pollmann, J.: Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys. Rev. B 76, 085407 (2007)CrossRefGoogle Scholar
  35. 35.
    Alam, K.M., Ray, A.K.: Hybrid density functional study of armchair SiC nanotubes. Phys. Rev. B 77, 035436 (2008)CrossRefGoogle Scholar
  36. 36.
    Şahin, H., Cahangirov, S., Topsakal, M., Bekaroglu, E., Akturk, E., Senger, R.T., et al.: Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys. Rev. B 80, 155453 (2009)CrossRefGoogle Scholar
  37. 37.
    Domínguez-Rodríguez, G.: An assessment of finite element analysis to predict the elastic modulus and Poisson’s ratio of single wall carbon nanotubes. Comput. Mater. Sci. 82, 257–263 (2014)CrossRefGoogle Scholar
  38. 38.
    Chandraseker, K., Mukherjee, S.: Atomistic-continuum and ab-initio estimation of the elastic moduli of single-walled carbon nanotubes. Comput. Mater. Sci. 40, 147–158 (2007)CrossRefGoogle Scholar
  39. 39.
    Hung, N.T., Truong, D.V., Thanh, V.V., Saito, R.: Intrinsic strength and failure behaviors of ultra-small single-walled carbon nanotubes. Comput. Mater. Sci. 114, 167–171 (2016)CrossRefGoogle Scholar
  40. 40.
    Peng, Y.-J., Zhang, L.-Y., Jin, Q.-H., Li, B.-H., Ding, D.-T.: Ab-initio studies of elastic properties and electronic structures of C and BN nanotubes. Physica E 33, 155–159 (2006)CrossRefGoogle Scholar
  41. 41.
    Chang, T., Gao, H.: Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids 51, 1059–1074 (2003)zbMATHCrossRefGoogle Scholar
  42. 42.
    Meo, M., Rossi, M.: Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos. Sci. Technol. 66, 1597–1605 (2006)CrossRefGoogle Scholar
  43. 43.
    Verma, V., Jindal, V.K., Dharamvir, K.: Elastic moduli of a boron nitride nanotube. Nanotechnology 18, 435711 (2007)CrossRefGoogle Scholar
  44. 44.
    Jindal, V.K., Imtani, A.N.: Bond lengths of armchair single-walled carbon nanotubes and their pressure dependence. Comput. Mater. Sci. 44, 156–162 (2008)CrossRefGoogle Scholar
  45. 45.
    Meo, M., Rossi, M.: On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach. Compos. Sci. Technol. 69, 1394–1398 (2009)CrossRefGoogle Scholar
  46. 46.
    Xiao, J.R., Staniszewski, J., Gillespie Jr., J.W.: Fracture and progressive failure of defective graphene sheets and carbon nanotubes. Compos. Struct. 88, 602–609 (2009)CrossRefGoogle Scholar
  47. 47.
    Wernik, J.M., Meguid, S.A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)zbMATHCrossRefGoogle Scholar
  48. 48.
    Berinskii, I.E., Krivtsov, A.M.: On using many-particle interatomic potentials to compute elastic properties of graphene and diamonds. Mech. Solut. 45, 815–883 (2010)CrossRefGoogle Scholar
  49. 49.
    Oh, E.-S.: Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Mater. Lett. 64, 859–862 (2010)CrossRefGoogle Scholar
  50. 50.
    Jiang, L., Guo, W.: A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J. Mech. Phys. Solids 59, 1204–1213 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Oh, E.-S.: Elastic properties of various boron-nitride structures. Met. Mater. Int. 17, 21–27 (2011)CrossRefGoogle Scholar
  52. 52.
    Parvaneh, V., Shariati, M.: Effect of defects and loading on prediction of Young’s modulus of SWCNTs. Acta Mech. 216, 281–289 (2011)zbMATHCrossRefGoogle Scholar
  53. 53.
    Silvestre, N., Faria, B., Canongia Lopes, J.N.: A molecular dynamics study on the thickness and post-critical strength of carbon nanotubes. Compos. Struct. 94, 1352–1358 (2012)CrossRefGoogle Scholar
  54. 54.
    Ansari, R., Mirnezhad, M., Sahmani, S.: An accurate molecular mechanics model for computation of size-dependent elastic properties of armchair and zigzag single-walled carbon nanotubes. Meccanica 48, 1355–1367 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Berinskii, I.E., Borodich, F.M.: Elastic in-plane properties of 2D linearized models of graphene. Mech. Mater. 62, 60–68 (2013)CrossRefGoogle Scholar
  56. 56.
    Davini, C.: Homogenization of a graphene sheet. Contin. Mech. Thermodyn. 26, 95–113 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Application of the molecular mechanics method to simulation of buckling of single-walled carbon nanotubes. Eng. Fract. Mech. 130, 83–95 (2014)CrossRefGoogle Scholar
  58. 58.
    Le, M.-Q.: Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J. Comput. Theor. Nanosci. 11, 1458–1464 (2014)CrossRefGoogle Scholar
  59. 59.
    Le, M.-Q., Nguyen, D.-T.: Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng. A 615, 481–488 (2014)CrossRefGoogle Scholar
  60. 60.
    Le, M.-Q.: Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations. Meccanica 49, 1709–1719 (2014)zbMATHCrossRefGoogle Scholar
  61. 61.
    Le, M.-Q.: Prediction of the Young’s modulus of hexagonal monolayer sheets based on molecular mechanics. Int. J. Mech. Mater. Des. 11, 15–24 (2015)CrossRefGoogle Scholar
  62. 62.
    Korobeynikov, S.N., Alyokhin, V.V., Annin, B.D., Babichev, A.V.: Quasi-static buckling simulation of single-layer graphene sheets by the molecular mechanics method. Math. Mech. Solids 20, 836–870 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Gamboa, A., Vignoles, G.L., Leyssale, J.-M.: On the prediction of graphene’s elastic properties with reactive empirical bond order potential. Carbon 89, 176–187 (2015)CrossRefGoogle Scholar
  64. 64.
    Tao, J., Xu, G., Sun, Y.: Elastic properties of boron-nitride nanotubes through an atomic simulation method. Math. Probl. Eng. 2015, 240547 (2015)Google Scholar
  65. 65.
    Yan, J.W., Liew, K.M.: Predicting elastic properties of single-walled boron nitride nanotubes and nanocones using an atomistic-continuum approach. Compos. Struct. 125, 489–498 (2015)CrossRefGoogle Scholar
  66. 66.
    Favata, A., Micheletti, A., Podio-Guidugli, P., Pugno, N.: Geometry and self-stress of single-wall carbon nanotubes and graphene via a discrete model based on a 2nd-generation REBO potential. J. Elast. 125, 1–37 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos. B Eng. 115, 316–329 (2017)CrossRefGoogle Scholar
  68. 68.
    Merli, R., Lázaro, C., Monleón, S., Domingo, A.: Energy approach to the unstressed geometry of single walled carbon nanotubes. Meccanica 52, 213–230 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Lee, H.-L., Wang, S.-W., Yang, Y.-C., Chang, W.-J.: Effect of porosity on the mechanical properties of a nanoporous graphene membrane using the atomic-scale finite element method. Acta Mech. 228, 2623–2629 (2017)CrossRefGoogle Scholar
  70. 70.
    Budarapu, P.R., Javvaji, B., Sutrakar, V.K., Roy Mahapatra, D., Paggi, M., Zi, G., Rabczuk, T.: Lattice orientation and crack size effect on the mechanical properties of Graphene. Int. J. Fract. 203, 81–98 (2017)CrossRefGoogle Scholar
  71. 71.
    Li, N., Ding, N., Qu, S., Liu, L., Guo, W., Wu, C.-H.L.: Mechanical properties and failure behavior of hexagonal boron nitride sheets with nano-cracks. Comput. Mater. Sci. 140, 356–366 (2017)CrossRefGoogle Scholar
  72. 72.
    Natsuki, T., Natsuki, J.: Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model. Appl. Phys. A 123, 283 (2017)CrossRefGoogle Scholar
  73. 73.
    Tapia, A., Cab, C., Hernández-Pérez, A., Villanueva, C., Peñuñuri, F., Avilés, F.: The bond force constants and elastic properties of boron nitride nanosheets and nanoribbons using a hierarchical modelling approach. Physica E 89, 183–193 (2017)CrossRefGoogle Scholar
  74. 74.
    Genoese, A., Genoese, A., Rizzi, N.L., Salerno, G.: Force constants of BN, SiC, AlN and GaN sheets through discrete homogenization. Meccanica 53, 593–611 (2018)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Hossain, M.Z., Hao, T., Silverman, B.: Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes. J. Phys. Condens. Matter. 30, 055901 (2018)CrossRefGoogle Scholar
  76. 76.
    Vijayaraghavan, V., Zhang, L.: Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 8, 546 (2018)CrossRefGoogle Scholar
  77. 77.
    Korobeynikov, S.N., Alyokhin, V.V., Babichev, A.V.: Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech. 229, 2343–2378 (2018)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Genoese, A., Genoese, A., Salerno, G.: Elastic constants of achiral single-wall CNTs: analytical expressions and a focus on size and small scale effects. Compos. B Eng. 147, 207–226 (2018)CrossRefGoogle Scholar
  79. 79.
    Wan, H., Delale, F.: A structural mechanics approach for predicting the mechanical properties of carbon nanotubes. Meccanica 45, 43–51 (2010)zbMATHCrossRefGoogle Scholar
  80. 80.
    Tserpes, K.I.: Strength of graphenes containing randomly dispersed vacancies. Acta Mech. 223, 669–678 (2012)zbMATHCrossRefGoogle Scholar
  81. 81.
    Torabi, H., Shariati, M., Sedaghat, E., Zadeh, A.L.: Buckling behavior of perfect and defective DWCNTs under axial, bending and torsional loadings via a structural mechanics approach. Meccanica 48, 1959–1974 (2013)zbMATHCrossRefGoogle Scholar
  82. 82.
    Sakharova, N.A., Pereira, A.F.G., Antunes, J.M., Brett, C.M.A., Fernandes, J.V.: Mechanical characterization of single-walled carbon nanotubes: numerical simulation study. Compos. B Eng. 75, 73–85 (2015)CrossRefGoogle Scholar
  83. 83.
    Giannopoulos, G.I., Kontoni, D.-P.N., Georgantzinos, S.K.: Efficient FEM simulation of static and free vibration behavior of single walled boron nitride nanotubes. Superlattice Microstruct. 96, 111–120 (2016)CrossRefGoogle Scholar
  84. 84.
    Rafiee, R., Eskandariyun, A.: Comparative study on predicting Young’s modulus of graphene sheets using nano-scale continuum mechanics approach. Physica E 90, 42–48 (2017)CrossRefGoogle Scholar
  85. 85.
    Giannopoulos, G.I.: On the buckling of hexagonal boron nitride nanoribbons via structural mechanics. Superlattices Microstruct. 115, 1–9 (2018)CrossRefGoogle Scholar
  86. 86.
    Silvestre, N., Wang, C.M., Zhang, Y.Y., Xiang, Y.: Sanders shell model for buckling of single-walled carbon nanotubes with small aspect ratio. Compos. Struct. 93, 1683–1691 (2011)CrossRefGoogle Scholar
  87. 87.
    Silvestre, N.: On the accuracy of shell models for torsional buckling of carbon nanotubes. Eur. J. Mech. A Solids 32, 103–108 (2012)zbMATHCrossRefGoogle Scholar
  88. 88.
    Hollerer, S., Celigoj, C.C.: Buckling analysis of carbon nanotubes by a mixed atomistic and continuum model. Comput. Mech. 51, 765–789 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Allahbakhshi, A., Allahbakhshi, M.: Vibration analysis of nano-structure multilayered graphene sheets using modified strain gradient theory. Front. Mech. Eng. 10, 187–197 (2015)CrossRefGoogle Scholar
  90. 90.
    Fadaee, M., Ilkhani, M.R.: Study on the effect of an eccentric hole on the vibrational behavior of a graphene sheet using an analytical approach. Acta Mech. 226, 1395–1407 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Aminpour, H., Rizzi, N.L.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21, 168–181 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    Jandaghian, A.A., Rahmani, O.: Buckling analysis of multi-layered graphene sheets based on a continuum mechanics model. Appl. Phys. A 123, 324 (2017)CrossRefGoogle Scholar
  93. 93.
    Sahmani, S., Fattahi, A.M.: Development of efficient size-dependent plate models for axial buckling of single-layered graphene nanosheets using molecular dynamics simulation. Microsyst. Technol. 24, 1265–1277 (2018)CrossRefGoogle Scholar
  94. 94.
    Singh, S., Patel, B.P.: A computationally efficient multiscale finite element formulation for dynamic and postbuckling analyses of carbon nanotubes. Comput. Struct. 195, 126–144 (2018)CrossRefGoogle Scholar
  95. 95.
    Erhart, P., Albe, K.: Analytical potential for atomistic simulations of silicon, carbon and silicon carbide. Phys. Rev. B 71, 035211 (2005)CrossRefGoogle Scholar
  96. 96.
    Rappé, A.K., Casewit, C.J., Colwell, K.S., Goddardlll, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar
  97. 97.
    Donnell, L. H.: Stability of Thin-Walled Tubes Under Torsion. NACA 479 (1935)Google Scholar
  98. 98.
    Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79, 1309–1331 (2009)zbMATHCrossRefGoogle Scholar
  99. 99.
    Nozaki, H., Itoh, S.: Structural stability of \(\text{ BC }_2\)N. J. Phys. Chem. Solids 57, 41–49 (1996)CrossRefGoogle Scholar
  100. 100.
    Malagù, M., Benvenuti, E., Simone, A.: One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: a molecular structural mechanics characterization. Eur. J. Mech. A Solids 54, 160–170 (2015)zbMATHCrossRefGoogle Scholar
  101. 101.
    Barretta, R., Brčić, M., Čanađija, M., Luciano, R., Marotti-de-Sciarra, F.: Application of gradient elasticity to armchair carbon nanotubes: size effects and constitutive parameters assessment. Eur. J. Mech. A Solids 65, 1–13 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Genoese, A., Genoese, A., Bilotta, A., Garcea, G.: Buckling analysis through a generalized beam model including section distortions. Thin Walled Struct. 85, 125–141 (2014)CrossRefGoogle Scholar
  103. 103.
    Gabriele, S., Rizzi, N.L., Varano, V.: A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int. J. Solids Struct. 94–95, 170–178 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LiMES, Dipartimento di ArchitetturaUniversità Roma TreRomaItaly

Personalised recommendations