Advertisement

Acta Mechanica

, Volume 230, Issue 3, pp 1037–1059 | Cite as

Computational modelling of multi-stage hydraulic fractures under stress shadowing and intersecting with pre-existing natural fractures

  • B. SobhaniaraghEmail author
  • M. Haddad
  • W. J. Mansur
  • F. C. Peters
Original Paper
  • 134 Downloads

Abstract

The key objective of this work is to establish a fully coupled pore pressure and stress model in order not only to investigate multi-stage hydraulic fractures (HFs) according to several completion designs, but also to study the complex problem of intersection of an HF and a pre-existing natural fracture (NF). First, this work concentrates on a computational finite element model based on the cohesive phantom node method (CPNM) to simulate initiation and propagation of multiple curving fractures. The primary contribution of this part is to shed light on the stress shadowing effect on conventional completion designs, i.e. simultaneous HF (Sim-HF) and sequential HF (Seq-HF), and in particular newly introduce the Texas two-step method (TTSM). Furthermore, the rock medium in the entire simulation domain is considered using the elasto-plastic constitutive equations of the Mohr–Coulomb and Drucker–Prager models. The impact of formation plasticity on the fracturing process is investigated, and the results obtained are compared with those based on the poro-elastic model. Second, in order to simulate the intersection of an HF with an NF, a cohesive crack-based finite element model (CCFEM) is developed along with a novel technique for the HF/NF intersection. Implementation of this technique at the intersection of HF and NF is considerably more straightforward in comparison with those in the available literature. In addition, this part aims at highlighting the crucial role of horizontal stress contrast in determining the type of HF/NF intersection scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the research support from CNPq (Brazilian Council for Scientific and Technological Development) with the Grant Number 150874/2017-0 and 306.933/2014-4, from CAPES (Brazilian Federal Agency for Support and Evaluation of Graduate Education), from FAPERJ (Research Foundation of the State of Rio de Janeiro) with the Grant Number E-26/203.021/2017 and E-26/203.234/2016, and from ANP (Brazilian Agency of Petroleum) through PETROBRAS network of applied geophysics with the Grant Number 0050.0070743.11.9.

References

  1. 1.
    Ahmed, U., Meehan, D.N.: Unconventional Oil and Gas Resources: Exploitation and Development. CRC Press, Boca Raton (2016) (ISBN: 9781498759403 - CAT# K28652)Google Scholar
  2. 2.
    Yuan, J., Luo, D., Feng, L.: A review of the technical and economic evaluation techniques for shale gas development. Appl. Energy 148, 49–65 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.040
  3. 3.
    UNFCCC . Adoption of the Paris agreement fccc/cp/2015/l. 9/rev. 1 (2015)Google Scholar
  4. 4.
    Heath, G.A., O Donoughue, P., Arent, D.J., Bazilian, M.: Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation. Proc. Natl. Acad. Sci. 111(31), E3167–E3176 (2014).  https://doi.org/10.1073/pnas.1309334111 CrossRefGoogle Scholar
  5. 5.
    Middleton, R.S., Keating, G.N., Stauffer, P.H., Jordan, A.B., Viswanathan, H.S., Kang, Q.J., et al.: The cross-scale science of co 2 capture and storage: from pore scale to regional scale. Energy Environ. Sci. 5(6), 7328–7345 (2012).  https://doi.org/10.1039/C2EE03227A CrossRefGoogle Scholar
  6. 6.
    Kim, T.H., Cho, J., Lee, K.S.: Evaluation of co2 injection in shale gas reservoirs with multi-component transport and geomechanical effects. Appl. Energy 190, 1195–1206 (2017).  https://doi.org/10.1016/j.apenergy.2017.01.047 CrossRefGoogle Scholar
  7. 7.
    Patel, P., Robart, C., Ruegamer, M., Yang, A., et al.: Analysis of US hydraulic fracturing fluid system and proppant trends. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2014).  https://doi.org/10.2118/168645-MS
  8. 8.
    Pommer, L., Gale, J.F., Eichhubl, P., Fall, A., et al.: Using structural diagenesis to infer the timing of natural fractures in the Marcellus Shale. Unconventional Resources Technology Conference (URTEC) (2013).  https://doi.org/10.1190/urtec2013-167
  9. 9.
    Fan, L., Luo, F., Lindsay, G.J., Thompson, J.W., Robinson, J.R., et al.: The bottom-line of horizontal well production decline in the Barnett Shale. In: SPE Production and Operations Symposium. Society of Petroleum Engineers (2011).  https://doi.org/10.2118/141263-MS
  10. 10.
    Hennings, P.H., Olson, J.E., Thompson, L.B.: Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs: an example from Wyoming. AAPG Bull. 84(6), 830–849 (2000)Google Scholar
  11. 11.
    Gale, J.F., Reed, R.M., Holder, J.: Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 91(4), 603–622 (2007).  https://doi.org/10.1306/11010606061 CrossRefGoogle Scholar
  12. 12.
    Parker, M.A., Buller, D., Petre, J.E., Dreher, D.T., et al.: Haynesville shale-petrophysical evaluation. In: SPE Rocky Mountain Petroleum Technology Conference. Society of Petroleum Engineers (2009).  https://doi.org/10.2118/122937-MS
  13. 13.
    Lu, J., Milliken, K., Reed, R.M., Hovorka, S.: Diagenesis and sealing capacity of the middle Tuscaloosa mudstone at the Cranfield carbon dioxide injection site, Mississippi, USA. Environ. Geosci. 18(1), 35–53 (2011).  https://doi.org/10.1306/eg.09091010015 CrossRefGoogle Scholar
  14. 14.
    Jarvie, D.M., Hill, R.J., Ruble, T.E., Pollastro, R.M.: Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull. 91(4), 475–499 (2007).  https://doi.org/10.1306/12190606068 CrossRefGoogle Scholar
  15. 15.
    Rutledge, J.T., Phillips, W.S.: Hydraulic stimulation of natural fractures as revealed by induced microearthquakes, Carthage Cotton Valley gas field, east Texas. Geophysics 68(2), 441–452 (2003).  https://doi.org/10.1190/1.1567214 CrossRefGoogle Scholar
  16. 16.
    Waters, G.A., Heinze, J.R., Jackson, R., Ketter, A.A., Daniels, J.L., Bentley, D., et al.: Use of horizontal well image tools to optimize Barnett Shale reservoir exploitation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2006).  https://doi.org/10.2118/103202-MS
  17. 17.
    Fu, W., Ames, B., Bunger, A., Savitski, A., et al.: An experimental study on interaction between hydraulic fractures and partially-cemented natural fractures. In: 49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2015)Google Scholar
  18. 18.
    Jeffrey, R.G., Zhang, X., Thiercelin, M.J., et al.: Hydraulic fracture offsetting in naturally fractures reservoirs: quantifying a long-recognized process. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2009).  https://doi.org/10.2118/119351-MS
  19. 19.
    Dahi, Taleghani A., Olson, J.E., et al.: How natural fractures could affect hydraulic-fracture geometry. SPE J. 19(01), 161–171 (2013).  https://doi.org/10.2118/167608-PA CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Jeffrey, R.G.: Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture. J. Geophys. Res. Solid Earth 117, (1–20) (2012).  https://doi.org/10.1029/2012JB009609
  21. 21.
    Zhang, X., Jeffrey, R.G.: Role of overpressurized fluid and fluid-driven fractures in forming fracture networks. J. Geochem. Explor. 144, 194–207 (2014).  https://doi.org/10.1016/j.gexplo.2014.03.021 CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Jeffrey, R.G., Thiercelin, M.: Mechanics of fluid-driven fracture growth in naturally fractured reservoirs with simple network geometries. J. Geophys. Res. Solid Earth 114(1–16) (2009).  https://doi.org/10.1029/2009JB006548
  23. 23.
    Ren, L., Su, Y., Zhan, S., Hao, Y., Meng, F., Sheng, G.: Modeling and simulation of complex fracture network propagation with SRV fracturing in unconventional shale reservoirs. J. Nat. Gas Sci. Eng. 28, 132–141 (2016).  https://doi.org/10.1016/j.gexplo.2014.03.021 CrossRefGoogle Scholar
  24. 24.
    Wu, K., Olson, J.E.: Mechanics analysis of interaction between hydraulic and natural fractures in shale reservoirs. Unconventional Resources Technology Conference (URTEC) (2014).  https://doi.org/10.15530/URTEC-2014-1922946
  25. 25.
    Zeng, Q., Yao, J.: Numerical simulation of fracture network generation in naturally fractured reservoirs. J. Nat. Gas Sci. Eng. 30, 430–443 (2016).  https://doi.org/10.1016/2Fj.jngse.2016.02.047 CrossRefGoogle Scholar
  26. 26.
    Kresse, O., Weng, X., Gu, H., Wu, R.: Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech. Rock Eng. 46(3), 555–568 (2013).  https://doi.org/10.1007/s00603-012-0359-2 CrossRefGoogle Scholar
  27. 27.
    Damjanac, B., Gil, I., Pierce, M., Sanchez, M., Van As, A., McLennan, J., et al.: A new approach to hydraulic fracturing modeling in naturally fractured reservoirs. In: 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association (2010)Google Scholar
  28. 28.
    Nagel, N.B., Gil, I., Sanchez-Nagel, M., Damjanac, B., et al.: Simulating hydraulic fracturing in real fractured rocks-overcjavascript: iterm oming the limits of pseudo3d models. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2011).  https://doi.org/10.2118/140480-MS
  29. 29.
    Zou, Y., Zhang, S., Ma, X., Zhou, T., Zeng, B.: Numerical investigation of hydraulic fracture network propagation in naturally fractured shale formations. J. Struct. Geol. 84, 1–13 (2016).  https://doi.org/10.1016/j.jsg.2016.01.004 CrossRefGoogle Scholar
  30. 30.
    Ouchi, H., Katiyar, A., Foster, J., Sharma, M.M., et al.: A peridynamics model for the propagation of hydraulic fractures in heterogeneous, naturally fractured reservoirs. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2015).  https://doi.org/10.2118/173361-PA
  31. 31.
    Ouchi, H., Foster, J.T., Sharma, M.M.: Effect of reservoir heterogeneity on the vertical migration of hydraulic fractures. J. Pet. Sci. Eng. 151, 384–408 (2017).  https://doi.org/10.1016/2Fj.petrol.2016.12.034 CrossRefGoogle Scholar
  32. 32.
    Oterkus, S., Madenci, E., Oterkus, E.: Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng. Geol. 225, 19–28 (2017).  https://doi.org/10.1016/j.enggeo.2017.02.001 CrossRefzbMATHGoogle Scholar
  33. 33.
    Shi, F., Wang, X., Liu, C., Liu, H., Wu, H.: An xfem-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures. Eng. Fract. Mech. 173, 64–90 (2017).  https://doi.org/10.1016/2Fj.engfracmech.2017.01.025 CrossRefGoogle Scholar
  34. 34.
    Dahi-Taleghani, A., Olson, J.E., et al.: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J. 16(03), 575–581 (2011).  https://doi.org/10.2118/124884-PA CrossRefGoogle Scholar
  35. 35.
    Sobhaniaragh, B., Mansur, W., Peters, F.: Three-dimensional investigation of multiple stage hydraulic fracturing in unconventional reservoirs. J. Pet. Sci. Eng. 146, 1063–1078 (2016).  https://doi.org/10.1016/j.petrol.2016.07.019 CrossRefGoogle Scholar
  36. 36.
    Sobhaniaragh, B., Nguyen, V., Mansur, W., Peters, F.: Pore pressure and stress coupling in closely-spaced hydraulic fracturing designs on adjacent horizontal wellbores. Eur. J. Mech. A/Solids 67, 18–33 (2018).  https://doi.org/10.1016/j.euromechsol.2017.08.010 CrossRefGoogle Scholar
  37. 37.
    Sobhaniaragh, B., Mansur, W., Peters, F.: Numerical simulation of non-uniform modified zipper-fracture design. In: 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 31 July–3 August 2017. Brazilian Geophysical Society, pp. 1757–1762 (2017).  https://doi.org/10.1190/sbgf2017-346
  38. 38.
    Sobhaniaragh, B., Mansur, W., Peters, F.: The role of stress interference in hydraulic fracturing of horizontal wells. Int. J. Rock Mech. Min. Sci. 106, 153–164 (2018).  https://doi.org/10.1016/j.ijrmms.2018.04.024 CrossRefGoogle Scholar
  39. 39.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000).  https://doi.org/10.1016/S0022-5096(99)00029-0 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ghajari, M., Iannucci, L., Curtis, P.: A peridynamic material model for the analysis of dynamic crack propagation in orthotropic media. Comput. Methods Appl. Mech. Eng. 276, 431–452 (2014).  https://doi.org/10.1016/j.cma.2014.04.002 MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007).  https://doi.org/10.1007/s10659-007-9125-1 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Gonzalez-Chavez, M., Dahi Taleghani, A., Olson, J.E., et al.: A cohesive model for modeling hydraulic fractures in naturally fractured formations. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2015).  https://doi.org/10.2118/173384-MS
  43. 43.
    Chen, Z.: Finite element modelling of viscosity-dominated hydraulic fractures. J. Pet. Sci. Eng. 88, 136–144 (2012).  https://doi.org/10.1016/j.petrol.2011.12.021 CrossRefGoogle Scholar
  44. 44.
    Haddad, M., Sepehrnoori, K.: Simulation of hydraulic fracturing in quasi-Brittle Shale formations using characterized cohesive layer: stimulation controlling factors. J. Unconvent. Oil Gas Resour. 9, 65–83 (2015).  https://doi.org/10.1016/j.juogr.2014.10.001 CrossRefGoogle Scholar
  45. 45.
    Carrier, B., Granet, S.: Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Eng. Fract. Mech. 79, 312–328 (2012).  https://doi.org/10.1016/j.engfracmech.2011.11.012 CrossRefGoogle Scholar
  46. 46.
    Sarris, E., Papanastasiou, P.: The influence of the cohesive process zone in hydraulic fracturing modelling. Int. J. Fract. 167(1), 33–45 (2011).  https://doi.org/10.1007/s10704-010-9515-4 CrossRefzbMATHGoogle Scholar
  47. 47.
    Manchanda, R., Sharma, M.M., et al.: Impact of completion design on fracture complexity in horizontal shale wells. SPE Drill. Complet. 29(01), 78–87 (2014).  https://doi.org/10.2118/159899-PA CrossRefGoogle Scholar
  48. 48.
    Roussel, N.P., Sharma, M.M., et al.: Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2011).  https://doi.org/10.2118/146104-MS
  49. 49.
    Vahab, M., Khalili, N.: X-fem modeling of multizone hydraulic fracturing treatments within saturated porous media. Rock Mech. Rock Eng. 51, 3219–3239 (2018).  https://doi.org/10.1007/s00603-018-1419-z
  50. 50.
    Kumar, D., Ghassemi, A., et al.: 3d poroelastic simulation and analysis of multiple fracture propagation and refracturing of closely-spaced horizontal wells. In: 50th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2016)Google Scholar
  51. 51.
    Sobhaniaragh, B., Trevelyan, J., Mansur, W., Peters, F.: Numerical simulation of mzf design with non-planar hydraulic fracturing from multi-lateral horizontal wells. J. Nat. Gas Sci. Eng. 46, 93–107 (2017).  https://doi.org/10.1016/j.petrol.2016.07.019 CrossRefGoogle Scholar
  52. 52.
    Wang, H.: Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Eng. Fract. Mech. 157, 107–124 (2016).  https://doi.org/10.1016/j.engfracmech.2016.02.025 CrossRefGoogle Scholar
  53. 53.
    Haddad, M., Du, J., Vidal-Gilbert, S., et al.: Integration of dynamic microseismic data with a true 3d modeling of hydraulic-fracture propagation in the vaca muerta shale. SPE J. 22 (2017).  https://doi.org/10.2118/179164-PA
  54. 54.
    Desroches, J., Lecampion, B., Ramakrishnan, H., Brown, J.E., Prioul, R., et al.: Benefits of controlled hydraulic fracture placement: theory and field experiment. In: SPE/CSUR Unconventional Resources Conference—Canada. Society of Petroleum Engineers (2014).  https://doi.org/10.2118/171667-MS
  55. 55.
    Lecampion, B., Desroches, J.: Robustness to formation geological heterogeneities of the limited entry technique for multi-stage fracturing of horizontal wells. Rock Mech. Rock Eng. 48(6), 2637–2644 (2015).  https://doi.org/10.1007/s00603-015-0836-5 CrossRefGoogle Scholar
  56. 56.
    Spain, D.R., Gil, I.R., Sebastian, H.M., Smith, P., Wampler, J., Cadwallader, S., et al.: Geo-engineered completion optimization: an integrated, multi-disciplinary approach to improve stimulation efficiency in unconventional shale reservoirs. In: SPE Middle East Unconventional Resources Conference and Exhibition. Society of Petroleum Engineers (2015).  https://doi.org/10.2118/172921-MS
  57. 57.
    East, L., Soliman, M.Y., Augustine, J.R., et al.: Methods for enhancing far-field complexity in fracturing operations. SPE Prod. Oper. 26(03), 291–303 (2011).  https://doi.org/10.2118/133380-PA Google Scholar
  58. 58.
    Soliman, M.Y., East, L.E., Augustine, J.R., et al.: Fracturing design aimed at enhancing fracture complexity. In: SPE EUROPEC/EAGE Annual Conference and Exhibition. Society of Petroleum Engineers (2010).  https://doi.org/10.2118/130043-MS
  59. 59.
    Kumar, D., Ghassemi, A.: A three-dimensional analysis of simultaneous and sequential fracturing of horizontal wells. J. Pet. Sci. Eng. 146, 1006–1025 (2016).  https://doi.org/10.1016/j.petrol.2016.07.001 CrossRefGoogle Scholar
  60. 60.
    Taheri-Shakib, J., Ghaderi, A., Hosseini, S., Hashemi, A.: Debonding and coalescence in the interaction between hydraulic and natural fracture: accounting for the effect of leak-off. J. Nat. Gas Sci. Eng. 36, 454–462 (2016).  https://doi.org/10.1016/j.jngse.2016.10.056 CrossRefGoogle Scholar
  61. 61.
    Wiedemann, G.: Ueber die Bewegung der Flüssigkeiten im Kreise der geschlossenen galvanischen Säule und ihre Beziehungen zur Elektrolyse. Ann. Phys. 175(10), 177–233 (1856).  https://doi.org/10.1002/andp.18561751002 CrossRefGoogle Scholar
  62. 62.
    Settari, A., Price, H., et al.: Simulation of hydraulic fracturing in low-permeability reservoirs. Soc. Pet. Eng. J. 24(02), 141–152 (1984).  https://doi.org/10.2118/8939-PA CrossRefGoogle Scholar
  63. 63.
    Atkinson, B.K.: Fracture mechanics of rock. Academic Press Limited, London (1987) (ISBN: 978-0-12-066266-1)Google Scholar
  64. 64.
    Crump, J., Conway, M., et al.: Effects of perforation-entry friction on bottomhole treating analysis. J. Pet. Technol. 40(08), 1–041 (1988).  https://doi.org/10.2118/15474-PA CrossRefGoogle Scholar
  65. 65.
    Rabczuk, T., Zi, G., Gerstenberger, A., Wall, W.: A new crack tip element for the phantom-node method with arbitrary cohesive cracks. Int. J. Numer. Methods Eng. 75(5), 577–599 (2008).  https://doi.org/10.1002/nme.2273 CrossRefzbMATHGoogle Scholar
  66. 66.
    Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  67. 67.
    Carpinteri, A.: Nonlinear Crack Models for Nonmetallic Materials, vol. 71. Springer, Berlin (2012). (ISBN: 9401147000, 9789401147002)Google Scholar
  68. 68.
    Cornec, A., Scheider, I., Schwalbe, K.H.: On the practical application of the cohesive model. Eng. Fract. Mech. 70(14), 1963–1987 (2003)CrossRefGoogle Scholar
  69. 69.
    Mei, H., Gowrishankar, S., Liechti, K.M., Huang, R.: Initiation and propagation of interfacial delamination in integrated thin-film structures. In: Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on. IEEE, pp. 1–8 (2010).  https://doi.org/10.1109/ITHERM.2010.5501290
  70. 70.
    Labuz, J.F., Zang, A.: Mohr-Coulomb failure criterion. Rock Mech. Rock Eng. 45(6), 975–979 (2012).  https://doi.org/10.1007/s00603-012-0281-7 CrossRefGoogle Scholar
  71. 71.
    Jiang, H., Xie, Y.: A note on the Mohr–Coulomb and Drucker–Prager strength criteria. Mech. Res. Commun. 38(4), 309–314 (2011).  https://doi.org/10.1016/j.mechrescom.2011.04.001 CrossRefzbMATHGoogle Scholar
  72. 72.
    Afrouz, A.: Practical Handbook of Rock Mass Classification Systems and Modes of Ground Failure. CRC Press, Boca Raton (1992)Google Scholar
  73. 73.
    Drucker, D.C., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10(2), 157–165 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Pramanik, R., Douillet-Grellier, T., Pan, K., Jones, B., Albaiz, A., Williams, J., et al.: An SPH approach to the simulation of hydraulic fracture propagation in naturally fractured rock medium. In: ARMA 50th US Rock Mechanics/Geomechanics Symposium, pp. 26–29 (2016)Google Scholar
  75. 75.
    Naderi-Boldaji, M., Alimardani, R., Hemmat, A., Sharifi, A., Keyhani, A., Tekeste, M.Z., et al.: 3d finite element simulation of a single-tip horizontal penetrometer-soil interaction. Part i: Development of the model and evaluation of the model parameters. Soil Tillage Res. 134, 153–162 (2013)CrossRefGoogle Scholar
  76. 76.
    Helwany, S.: Applied Soil Mechanics with ABAQUS Applications. Wiley, New York (2007). ISBN: 978-0-471-79107-2Google Scholar
  77. 77.
    Alejano, L.R., Bobet, A.: Drucker–Prager criterion. In: The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Springer, pp. 247–252 (2012).  https://doi.org/10.1007/978-3-319-07713-0_22
  78. 78.
    Geertsma, J., De Klerk, F., et al.: A rapid method of predicting width and extent of hydraulically induced fractures. J. Pet. Technol. 21(12), 1–571 (1969).  https://doi.org/10.2118/2458-PA CrossRefGoogle Scholar
  79. 79.
    Valko, P., Economides, M.J.: Hydraulic Fracture Mechanics, vol. 28. Wiley, Chichester (1995).  https://doi.org/10.1111/j.1475-1305.1996.tb01021.x Google Scholar
  80. 80.
    Yuan, R., Jin, L., Zhu, C., Vitthal, S., Xu, B., et al.: High pressure stimulation-impact of hydraulic fracture geometry to unconventional gas appraisal and development in compressional settings. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2013).  https://doi.org/10.2118/166348-MS
  81. 81.
    Rafiee, M., Soliman, M.Y., Pirayesh, E., et al.: Hydraulic fracturing design and optimization: a modification to zipper frac. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2012).  https://doi.org/10.2118/159786-MS
  82. 82.
    Sharma, M., Manchanda, R., et al.: The role of induced un-propped (iu) fractures in unconventional oil and gas wells. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2015).  https://doi.org/10.2118/174946-MS

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • B. Sobhaniaragh
    • 1
    • 2
    Email author
  • M. Haddad
    • 3
  • W. J. Mansur
    • 1
    • 2
  • F. C. Peters
    • 1
    • 2
  1. 1.Modelling Methods in Engineering and Geophysics Laboratory (LAMEMO), COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of Civil Engineering, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations