Advertisement

Modified couple stress theory in orthogonal curvilinear coordinates

  • Hamed Farokhi
  • Mergen H. Ghayesh
Original Paper
  • 24 Downloads

Abstract

The formulations for the modified couple stress theory (MCST) are consistently derived in general orthogonal curvilinear coordinate systems. In particular, the expressions for the rotation vector, higher-order strain, and stress tensors, i.e., the rotation gradient tensor and the deviatoric part of the symmetric couple stress tensor, and the classical strain and stress tensors are derived for an arbitrary orthogonal curvilinear coordinate system. Additionally, using the theory of surfaces, the formulations for the MCST are derived for general doubly curved coordinates, which are more convenient to use for shells of arbitrary curvature. The expressions for special cases, i.e., cylindrical and spherical shells, are obtained. The MCST expressions derived in this study are comprehensive and generally and can be used for consistent utilisation of the MCST in any orthogonal curvilinear coordinate system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ghayesh, M.H., Amabili, M., Farokhi, H.: Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int. J. Eng. Sci. 63, 52–60 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Eng. Sci. 4, 109–124 (1968)zbMATHGoogle Scholar
  6. 6.
    Ghayesh, M.H., Farokhi, H.: Chaotic motion of a parametrically excited microbeam. Int. J. Eng. Sci. 96, 34–45 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yazdani Sarvestani, H., Akbarzadeh, A.H., Mirabolghasemi, A.: Structural analysis of size-dependent functionally graded doubly-curved panels with engineered microarchitectures. Acta Mech. 1–27 (2018)Google Scholar
  8. 8.
    Ghayesh, M.H., Farokhi, H., Alici, G.: Size-dependent performance of microgyroscopes. Int. J. Eng. Sci. 100, 99–111 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fernandes, R., Mousavi, S.M., El-Borgi, S.: Free and forced vibration nonlinear analysis of a microbeam using finite strain and velocity gradients theory. Acta Mech. 227, 2657–2670 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gholipour, A., Farokhi, H., Ghayesh, M.H.: In-plane and out-of-plane nonlinear size-dependent dynamics of microplates. Nonlinear Dyn. 79, 1771–1785 (2015)CrossRefGoogle Scholar
  11. 11.
    Ghayesh, M.H., Amabili, M., Farokhi, H.: Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams. Int. J. Eng. Sci. 71, 1–14 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Taati, E., Molaei Najafabadi, M., Basirat Tabrizi, H.: Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225, 1823–1842 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear dynamics of a microscale beam based on the modified couple stress theory. Compos. Part B Eng. 50, 318–324 (2013)CrossRefGoogle Scholar
  14. 14.
    Asghari, M., Kahrobaiyan, M., Nikfar, M., Ahmadian, M.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223, 1233–1249 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ghayesh, M.H., Farokhi, H., Amabili, M.: In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos. Part B Eng. 60, 423–439 (2014)CrossRefGoogle Scholar
  16. 16.
    Ghayesh, M.H., Farokhi, H.: Coupled size-dependent behavior of shear deformable microplates. Acta Mech. 227, 757–775 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ghayesh, M.H., Farokhi, H.: Nonlinear dynamics of microplates. Int. J. Eng. Sci. 86, 60–73 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Farokhi, H., Ghayesh, M.H.: Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int. J. Eng. Sci. 91, 12–33 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Farokhi, H., Ghayesh, M.H.: Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory. Int. J. Mech. Sci. 90, 133–144 (2015)CrossRefGoogle Scholar
  20. 20.
    Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71, 137–155 (2013)CrossRefGoogle Scholar
  21. 21.
    Ghayesh, M.H.: Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl. Math. Model. 59, 583–596 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ghayesh, M.H.: Dynamics of functionally graded viscoelastic microbeams. Int. J. Eng. Sci. 124, 115–131 (2018)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Farokhi, H., Ghayesh, M.H., Gholipour, A., Hussain, Sh: Motion characteristics of bilayered extensible Timoshenko microbeams. Int. J. Eng. Sci. 112, 1–17 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Ghayesh, M.H., Farokhi, H., Gholipour, A.: Oscillations of functionally graded microbeams. Int. J. Eng. Sci. 110, 35–53 (2017)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ghayesh, M.H., Farokhi, H., Gholipour, A.: Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams. Int. J. Mech. Sci. 122, 370–383 (2017)CrossRefGoogle Scholar
  26. 26.
    Farokhi, H., Ghayesh, M.H.: Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun. Nonlinear Sci. Numer. Simul. 59, 592–605 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Farokhi, H., Ghayesh, M.H.: Nonlinear mechanics of electrically actuated microplates. Int. J. Eng. Sci. 123, 197–213 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ghayesh, M.H., Farokhi, H., Gholipour, A., Tavallaeinejad, M.: Nonlinear oscillations of functionally graded microplates. Int. J. Eng. Sci. 122, 56–72 (2018)CrossRefGoogle Scholar
  29. 29.
    Ghayesh, M.H.: Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity. Int. J. Mech. Sci. 140, 339–350 (2018)CrossRefGoogle Scholar
  30. 30.
    Park, S.K., Gao, X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16, 2355 (2006)CrossRefGoogle Scholar
  31. 31.
    Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRefGoogle Scholar
  32. 32.
    Eringen, A.C.: Mechanics of continua. Wiley, (1967)Google Scholar
  33. 33.
    Ghayesh, M.H., Paidoussis, M.P., Amabili, M.: Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J. Sound Vib. 332, 6405–6418 (2013)CrossRefGoogle Scholar
  34. 34.
    Ghayesh, M.H., Farokhi, H., Hussain, Sh: Viscoelastically coupled size-dependent dynamics of microbeams. Int. J. Eng. Sci. 109, 243–255 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ghayesh, M.H., Amabili, M.: Nonlinear dynamics of axially moving viscoelastic beams over the buckled state. Comput. Struct. 112–113, 406–421 (2012)CrossRefGoogle Scholar
  36. 36.
    Ghayesh, M.H., Amabili, M., Paidoussis, M.P.: Nonlinear vibrations and stability of an axially moving beam with an intermediate spring support: two-dimensional analysis. Nonlinear Dyn. 70(1), 335–354 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Farokhi, H., Ghayesh, M.H.: Size-dependent parametric dynamics of imperfect microbeams. Int. J. Eng. Sci. 99, 39–55 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Ghayesh, M.H., Amabili, M.: Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam. Compos. Part B: Eng. 60, 371–377 (2014)CrossRefGoogle Scholar
  39. 39.
    Ghayesh, M.H.: Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech. Mach. Theory 44, 1964–1979 (2009)CrossRefGoogle Scholar
  40. 40.
    Ghayesh, M.H.: On the natural frequencies, complex mode functions, and critical speeds of axially traveling laminated beams: parametric study. Acta Mech. Solida Sinica 24(4), 373–382 (2011)CrossRefGoogle Scholar
  41. 41.
    Haque, M.A., Saif, M.T.A.: Strain gradient effect in nanoscale thin films. Acta Mater. 51, 3053–3061 (2003)CrossRefGoogle Scholar
  42. 42.
    Chen, S.H., Feng, B.: Size effect in micro-scale cantilever beam bending. Acta Mech. 219, 291–307 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Construction EngineeringNorthumbria UniversityNewcastle upon TyneUK
  2. 2.School of Mechanical EngineeringUniversity of AdelaideAdelaideAustralia

Personalised recommendations