Advertisement

Acta Mechanica

, Volume 230, Issue 3, pp 787–804 | Cite as

The electric field effect on the droplet collision with a heated surface in the Leidenfrost regime

  • H. Nazari
  • P. PournaderiEmail author
Original Paper
  • 106 Downloads

Abstract

In this study, the impingement of a conductive droplet on a hot wall under an electric field in the Leidenfrost regime is simulated. Apart from electrostatic equations, the governing equations are conservation equations of mass, momentum, and energy in the incompressible case. The level set method is used for interface tracking. For the appropriate application of discontinuities at the interface, the ghost fluid method is adopted. First, a sessile droplet on a superheated surface under an electric field is simulated. Simulation results are validated against the experiments. Under an electric field, an increase in the heat flux dissipated from the surface is observed for a sessile droplet. In the next step, droplet impact on a hot surface in the range of low Weber numbers \(({We}\le 30)\) in the presence of an electric field is simulated. According to the results, the droplet spreading radius and contact time increase with electric field strength. In addition, applying an electric field increases the heat transfer rate and total heat removal from the surface. If the potential difference between the droplet and the surface exceeds a specific value, the Leidenfrost state is suppressed. The threshold potential difference for Leidenfrost suppression decreases with Weber number and increases with surface superheat.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Ha, J.W., Yang, S.M.: Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J. Fluid Mech. 405, 131 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Paknemat, H., Pishevar, A.R., Pournaderi, P.: Numerical simulation of drop deformations and breakup modes caused by direct current electric fields. Phys. Fluids 24, 102101 (2012)CrossRefGoogle Scholar
  3. 3.
    Brarnia, H., Ganji, D.D.: Breakup and deformation of a falling droplet under high voltage electric field. Adv. Powder Technol. 24, 992 (2013)CrossRefGoogle Scholar
  4. 4.
    Karyyappa, R.B., Deshmukh, ShD, Thaokar, R.M.: Breakup of a conducting drop in a uniform electric field. J. Fluid Mech. 754, 550 (2014)CrossRefGoogle Scholar
  5. 5.
    Moita, A.S., Moreira, A.L.N.: Drop impacts onto cold and heated rigid surfaces: morphological comparisons, disintegration limits and secondary atomization. Int. J. Heat and Fluid Flow 28, 735 (2007)CrossRefGoogle Scholar
  6. 6.
    Pournaderi, P., Pishevar, A.R.: A numerical investigation of droplet impact on a heated wall in the film boiling regime. Heat Mass Transf. 48, 1525 (2012)CrossRefGoogle Scholar
  7. 7.
    Celestini, F., Kirstetter, G.: Effect of an electric field on a Leidenfrost droplet. Soft Matter 8, 5992 (2012)CrossRefGoogle Scholar
  8. 8.
    Vancauwenberghe, V., Di Marco, P., Brutin, D.: Wetting and evaporation of a sessile drop under an external electrical field: a review. Colloids Surf. A Physicochem. Eng. Asp. 432, 50 (2013)CrossRefGoogle Scholar
  9. 9.
    Fan, Y., Wang, J., Huo, Y., Zuo, Z.: Investigations on the evaporation of charged droplets on hydrophobic surface. Proc. Int. Conf. Heat Transf. Fluid Flow 135, 1 (2014)Google Scholar
  10. 10.
    Shahriari, A., Wurz, J., Bahadur, V.: Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures. Langmuir 30, 12074 (2014)CrossRefGoogle Scholar
  11. 11.
    Zuo, Z., Wang, J., Huo, Y., Fan, Y.: Numerical study of droplet evaporation in coupled high temperature and electrostatic fields. Adv. Mech. Eng. 7, 1 (2015)CrossRefGoogle Scholar
  12. 12.
    Wildeman, S., Sun, C.: Electric field makes Leidenfrost droplets take a leap. Soft Matter 12, 9622 (2016)CrossRefGoogle Scholar
  13. 13.
    Ozkan, O., Shahriari, A., Bahadur, V.: Electrostatic suppression of the Leidenfrost state using AC electric fields. Appl. Phys. Lett. 111, 141608 (2017)CrossRefGoogle Scholar
  14. 14.
    Nguyen, D.Q., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for incompressible flame discontinuities. J. Comput. Phys. 172, 71 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gibou, F., Chen, L., Nguyen, D., Banerjee, S.: A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 222, 536 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Saville, D.A.: Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29, 27 (1997)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A nonoscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bjorklund, E.: The level-set method applied to droplet dynamics in the presence of an electric field. Comput. Fluids. 38, 358 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson equation on irregular domains. J. Comput. Phys. 160, 151 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146 (1994)CrossRefzbMATHGoogle Scholar
  23. 23.
    Son, G., Dhir, V.K.: Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int. J. Heat Mass Transf. 51, 2566 (2008)CrossRefzbMATHGoogle Scholar
  24. 24.
    Aslam, T.: A partial differential equation approach to multidimensional extrapolation. J. Comput. Phys. 193, 349 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Takano, K., Tanasawa, I., Nishio, Sh: Active enhancement of evaporation of a liquid drop on a hot solid surface using a static electric field. Int. J. Heat Mass Transf. 37, 65 (1994)CrossRefGoogle Scholar
  26. 26.
    Wachters, L.H.J., Westerling, N.A.J.: The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Eng. Sci. 21, 1047 (1966)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringYasouj UniversityYasoujIran

Personalised recommendations