Advertisement

Acta Mechanica

, Volume 230, Issue 3, pp 909–928 | Cite as

Circumferential gap and partial debonding effects on buckling loads and modes of slender CFST circular columns

  • Simon SchnablEmail author
  • Igor Planinc
Original Paper
  • 61 Downloads

Abstract

This paper presents a new mathematical model for analytical investigation of global buckling behavior of slender concrete-filled steel tubular (CFST) columns with circumferential gaps and partial debonding between the concrete core and the steel tube. The analytical buckling load of circular and slender CFST columns with circumferential gaps and partial debonding is derived for the first time. The critical buckling load decreases as the magnitude and length of the circumferential gap increases. Nevertheless, it is shown that if the length of the circumferential gap is smaller than the length of the CFST column, this effect is less than 4%. On the other hand, for a fully delaminated CFST column, this effect can be up to approximately 40%. Similarly, the first buckling shape modes proved to be notably affected by the circumferential gap only if its length is greater than 75% of the CFST column length. The results can be used as a benchmark solution for the buckling problem of slender circular CFST columns with circumferential gaps and partial debonding between the materials.

List of symbols

A

Cross-sectional area (cm\(^2\))

D

Outer diameter of the steel tube (cm)

\(D_{\sigma }\)

Strain

E

Elastic modulus (kN/cm\(^{2}\))

I

Moment of inertia (cm\(^4\))

\(K_{x}, K_{y}, K_{z}\)

Tangent, radial, and circumferential contact stiffness (kN/cm\(^2\))

L

Column length (cm)

\(L_\mathrm{del}\)

Delamination length (cm)

\(L_{1}, L_{2}\), and \(L_{3}\)

Length of segments 1–3 (cm)

\(M_Y\)

Cross-sectional bending moment (kNcm)

\(N_\mathrm{cr,e}\)

Experimental axial capacity (kN)

P

Centrally applied point force (kN)

\(P_\mathrm{cr}\)

Critical buckling load (kN)

\(R_\mathrm{d}\)

Full debonding arc-length ratio

\(p_{X}, p_{Y}, p_{Z}\)

X, Y, and Z component of the contact traction (kN/cm)

\(R_X, R_Z\)

X and Z component of the cross-sectional equilibrium force (kN)

t

Wall thickness of the steel tube (cm)

\(u_X\)

Axial displacement (cm)

\(u_Z\)

Deflection (cm)

Greek letters

\(\omega \)

Debonding angle (rad)

\(\delta \)

Variational operator

\(\varDelta _{x}, \varDelta _{y}, \varDelta _{z}\)

Generalized slip in tangential, radial, and circumferential direction (cm)

\(\varDelta _{X},\varDelta _{Y},\varDelta _{Z}\)

Generalized slip in XY, and Z direction (cm)

\(\varepsilon \)

Extensional strain

\(\varepsilon _\mathrm{cr}\)

Critical axial strain

\(\kappa \)

Pseudocurvature (rad/m)

\(\lambda \)

Column slenderness ratio

\(\sigma \)

Stress (kN/cm\(^2\))

\(\varphi \)

Rotation (rad)

Subscripts and superscripts

i

Layer or material

c

Concrete core

s

Steel tube

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core Funding No. P2-0260).

References

  1. 1.
    Zeghiche, J., Chaoui, K.: An experimental behaviour of concrete-filled steel tubular columns. J. Constr. Steel Res. 61, 53–66 (2005)CrossRefGoogle Scholar
  2. 2.
    Ellobody, E., Young, B., Lam, D.: Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns. J. Constr. Steel Res. 62(5), 706–715 (2006)CrossRefGoogle Scholar
  3. 3.
    Yang, Y.F., Han, L.H.: Experimental behaviour of recycled aggregate concrete filled steel tubular columns. J. Constr. Steel Res. 62, 1310–1324 (2006)CrossRefGoogle Scholar
  4. 4.
    Guo, L., Zhang, S., Kim, W.J., Ranzi, G.: Behavior of square hollow steel tubes and steel tubes filled with concrete. Thin Walled Struct. 45(12), 961–973 (2007)CrossRefGoogle Scholar
  5. 5.
    Lam, D., Gardner, L.: Structural design of stainless steel concrete filled columns. J. Constr. Steel Res. 64(11), 1275–1282 (2008)CrossRefGoogle Scholar
  6. 6.
    Chen, J., Jin, W.: Experimental investigation of thin-walled complex section concrete-filled steel stub columns. Thin Walled Struct. 48, 718–724 (2010)CrossRefGoogle Scholar
  7. 7.
    Uy, B., Tao, Z., Han, L.H.: Behaviour of short and slender concrete-filled stainless steel tubular columns. J. Constr. Steel Res. 67, 360–378 (2011)CrossRefGoogle Scholar
  8. 8.
    Dundu, M.: Compressive strength of circular concrete filled steel tube columns. Thin Walled Struct. 56, 62–70 (2012)CrossRefGoogle Scholar
  9. 9.
    Lai, M.H., Ho, J.C.M.: Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load. Eng. Struct. 67, 123–141 (2014)CrossRefGoogle Scholar
  10. 10.
    Ren, Q.X., Han, L.H., Lam, D., Li, W.: Tests on elliptical concrete filled steel tubular (CFST) beams and columns. J. Constr. Steel Res. 99, 149–160 (2014)CrossRefGoogle Scholar
  11. 11.
    Feng, P., Cheng, S., Bai, Y., Ye, L.: Mechanical behavior of concrete-filled square steel tube with FRP-confined concrete core subjected to axial compression. Compos. Struct. 123, 312–324 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, Y., Chen, J., Geng, Y.: Testing and analysis of axially loaded normal-strength recycled aggregate concrete filled steel tubular stub columns. Eng. Struct. 86, 192–212 (2015)CrossRefGoogle Scholar
  13. 13.
    Shams, M., Saadeghvaziri, M.A.: Nonlinear response of concrete-filled steel tubular columns under axial loading. J. Constr. Steel Res. 96(6), 1009–1017 (1999)Google Scholar
  14. 14.
    Hu, H.T., Huang, C.S., Wu, M.H., Wu, Y.M.: Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. J. Struct. Eng. ASCE 129(10), 1322–1329 (2003)CrossRefGoogle Scholar
  15. 15.
    Liang, Q.Q., Fragomeni, S.: Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading. J. Constr. Steel Res. 65, 2186–2196 (2009)CrossRefGoogle Scholar
  16. 16.
    Valipour, H.R., Foster, S.J.: Nonlinear analysis and cyclic analysis of concrete-filled steel columns. J. Constr. Steel Res. 66, 793–802 (2010)CrossRefGoogle Scholar
  17. 17.
    Liang, Q.Q.: High strength circular concrete-filled steel tubular slender beam-columns, part I: numerical analysis. J. Constr. Steel Res. 67, 164–171 (2011)CrossRefGoogle Scholar
  18. 18.
    Tao, Z., Wang, Z.B., Yu, Q.: Finite element modelling of concrete-filled steel stub columns under axial compression. J. Constr. Steel Res. 89, 121–131 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, K., Young, B.: Fire resistance of concrete-filled high strength steel tubular columns. Thin Walled Struct. 71, 46–56 (2013)CrossRefGoogle Scholar
  20. 20.
    Hassanein, M.F., Kharoob, O.F.: Analysis of circular concrete-filled double skin tubular slender columns with external stainless steel tubes. Thin Walled Struct. 79, 23–37 (2014)CrossRefGoogle Scholar
  21. 21.
    Patel, V.I., Liang, Q.Q., Hadi, M.N.S.: Nonlinear analysis of axially loaded circular concrete-filled stainless steel tubular short columns. J. Constr. Steel Res. 101, 9–18 (2014)CrossRefGoogle Scholar
  22. 22.
    Zhang, D.J., Ma, Y.S., Wang, Y.: Compressive behavior of concrete filled steel tubular columns subjected to long-term loading. Thin Walled Struct. 89, 205–211 (2015)CrossRefGoogle Scholar
  23. 23.
    Aslani, F., Uy, B., Tao, Z., Mashiri, F.: Behaviour and design of composite columns incorporating compact high-strength steel plates. J. Constr. Steel Res. 107, 94–110 (2015)CrossRefGoogle Scholar
  24. 24.
    Schneider, S.: Axially loaded concrete-filled steel tubes. J. Struct. Eng. ASCE 124(10), 1125–1138 (1998)CrossRefGoogle Scholar
  25. 25.
    Brauns, J.: Analysis of stress state in concrete-filled steel column. J. Constr. Steel Res. 49, 189–196 (1999)CrossRefGoogle Scholar
  26. 26.
    Choi, K.K., Xiao, Y.: Analytical studies of concrete-filled circular steel tubes under axial compression. J. Struct. Eng. ASCE 136(5), 565–573 (2010)CrossRefGoogle Scholar
  27. 27.
    Susantha, K.A.S., Ge, H., Usami, T.: Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes. Eng. Struct. 23, 1331–1347 (2001)CrossRefGoogle Scholar
  28. 28.
    Fam, A., Qie, F.S., Rizkalla, S.: Concrete-filled steel tubes subjected to axial compression and lateral cyclic loads. J. Struct. Eng. ASCE 130(4), 631–640 (2004)CrossRefGoogle Scholar
  29. 29.
    Kuranovas, A., Goode, D., Kvedaras, A.K., Zhong, S.: Load-bearing capacity of concrete-filled steel columns. J. Civ. Eng. Manag. 15(1), 21–33 (2009)CrossRefGoogle Scholar
  30. 30.
    Liao, F.Y., Han, L.H., He, S.H.: Behavior of CFST short column and beam with initial concrete imperfection: experiments. J. Constr. Steel Res. 67(12), 1922–1935 (2011)CrossRefGoogle Scholar
  31. 31.
    Hajjar, J.F., Schiller, P.H., Molodan, A.: A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip. Eng. Struct. 20(8), 663–676 (1998)CrossRefGoogle Scholar
  32. 32.
    Roeder, C.W., Cameron, B., Brown, C.B.: Composite action in concrete filled tubes. J. Struct. Eng. ASCE 125(5), 477–484 (1999)CrossRefGoogle Scholar
  33. 33.
    O’Shea, M.D., Bridge, R.Q.: Design of circular thin-walled concrete filled steel tubes. J. Struct. Eng. ASCE 126(11), 1295–1303 (2000)CrossRefGoogle Scholar
  34. 34.
    Roeder, C.W., Lehman, D.E., Bishop, E.: Strength and stiffness of circular concrete-filled tubes. J. Struct. Eng. ASCE 136(12), 1545–1553 (2010)CrossRefGoogle Scholar
  35. 35.
    Xue, J.Q., Briseghella, B., Chen, B.C.: Effects of debonding on circular CFST stub columns. J. Constr. Steel Res. 69, 64–76 (2012)CrossRefGoogle Scholar
  36. 36.
    Shiming, C., Huifeng, Z.: Numerical analysis of the axially loaded concrete filled steel tube columns with debonding separation at the steel-concrete interface. Steel Compos. Struct. 13(3), 1–17 (2012)Google Scholar
  37. 37.
    Liao, F.Y., Han, L.H., Tao, Z.: Behavior of CFST stub columns with initial concrete imperfection: analysis and calculations. Thin Walled Struct. 70, 57–69 (2013)CrossRefGoogle Scholar
  38. 38.
    Xu, B., Zhang, T., Song, G., Gu, H.: Active interface debonding detection of a concrete-filled steel tube with piezoelectric technologies using wavelet packet analysis. Mech. Syst. Signal Process. 36, 7–17 (2013)CrossRefGoogle Scholar
  39. 39.
    Xu, B., Li, B., Song, G.: Active debonding detection for large rectangular CFSTs based on wavelet packet energy spectrum with piezoceramics. J. Struct. Eng. ASCE 139(9), 1435–1443 (2013)CrossRefGoogle Scholar
  40. 40.
    Han, L.H., Ye, Y., Liao, F.Y.: Effects of core concrete initial imperfection on performance of eccentrically loaded CFST columns. J. Struct. Eng. ASCE 142(12), 04016132 (2016)CrossRefGoogle Scholar
  41. 41.
    Goode, C.D., Kuranovas, A., Kvedaras, A.K.: Buckling of slender composite concrete-filled steel columns. J. Civ. Eng. Manag. 16(2), 230–236 (2010)CrossRefGoogle Scholar
  42. 42.
    Romero, M.L., Moliner, V., Espinos, A., Ibañez, C., Hospitaler, A.: Fire behavior of axially loaded slender high strength concrete-filled tubular columns. J. Constr. Steel Res. 67(12), 1953–1965 (2011)CrossRefGoogle Scholar
  43. 43.
    Portolés, J.M., Romero, M.L., Filippou, F.C., Bonet, J.L.: Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns. Eng. Struct. 33(5), 1576–1593 (2011)CrossRefGoogle Scholar
  44. 44.
    Dai, X.H., Lam, D., Jamaluddin, N., Ye, J.: Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin Walled Struct. 77, 26–35 (2014)CrossRefGoogle Scholar
  45. 45.
    Han, L.H.: Tests on concrete filled steel tabular columns with high slenderness ratio. Adv. Struct. Eng. 3(4), 337–344 (2000)CrossRefGoogle Scholar
  46. 46.
    Schnabl, S., Jelenić, G., Planinc, I.: Analytical buckling of slender circular concrete-filled steel tubular columns with compliant interfaces. J. Constr. Steel Res. 115, 252–262 (2015)CrossRefGoogle Scholar
  47. 47.
    Schnabl, S., Planinc, I.: Buckling of slender concrete-filled steel tubes with compliant interfaces. Lat. Am. J. Solids Struct. 14, 1837–1852 (2017)CrossRefGoogle Scholar
  48. 48.
    Schnabl, S., Saje, M., Turk, G., Planinc, I.: Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J. Struct. Eng. ASCE 133(6), 886–894 (2007)CrossRefGoogle Scholar
  49. 49.
    Kryžanowski, A., Schnabl, S., Turk, G., Planinc, I.: Exact slip-buckling analysis of two-layer composite columns. Int. J. Solids Struct. 46, 2929–2938 (2008)CrossRefzbMATHGoogle Scholar
  50. 50.
    Schnabl, S., Planinc, I.: The influence of boundary conditions and axial deformability on buckling behavior of two-layer composite columns with interlayer slip. Eng. Struct. 32(10), 3103–3111 (2010)CrossRefGoogle Scholar
  51. 51.
    Schnabl, S., Planinc, I.: The effect of transverse shear deformation on the buckling of two-layer composite columns with interlayer slip. Int. J. Nonlinear Mech. 46(3), 543–553 (2011)CrossRefGoogle Scholar
  52. 52.
    Schnabl, S., Planinc, I.: Inelastic buckling of two-layer composite columns with non-linear interface compliance. Int. J. Mech. Sci. 53(12), 1077–1083 (2011)CrossRefGoogle Scholar
  53. 53.
    Schnabl, S., Planinc, I.: Exact buckling loads of two-layer composite Reissner’s columns with interlayer slip and uplift. Int. J. Solids Struct. 50, 30–37 (2013)CrossRefGoogle Scholar
  54. 54.
    Kryžanowski, A., Planinc, I., Schnabl, S.: Slip-buckling analysis of longitudinally delaminated composite columns. Eng. Struct. 76, 404–414 (2014)CrossRefGoogle Scholar
  55. 55.
    Reissner, E.: On one-dimensional finite-strain beam theory: the plane problem. J. Appl. Mech. Phys. ZAMP 23, 795–804 (1972)zbMATHGoogle Scholar
  56. 56.
    Wells, G.N., De Borst, R., Sluys, L.: A consistent geometrically non-linear approach for delamination. Int. J. Numer. Methods Eng. 54, 1333–1355 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Kroflič, A., Saje, M., Planinc, I.: Non-linear analysis of two-layer beams with interlayer slip and uplift. Comput. Struct. 89(23–24), 2414–2424 (2011)Google Scholar
  58. 58.
    Kolšek, J., Saje, M., Planinc, I., Hozjan, T.: A fully generalised approach to modelling fire response of steel-RC composite structures. Int. J. Nonlinear Mech. 67, 382–393 (2014)CrossRefGoogle Scholar
  59. 59.
    Volokh, K.Y., Needleman, A.: Buckling of sandwich beams with compliant interfaces. Comput. Struct. 80, 1329–1335 (2002)CrossRefGoogle Scholar
  60. 60.
    Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)CrossRefzbMATHGoogle Scholar
  61. 61.
    Adekola, A.: Partial interaction between elastically connected elements of a composite beam. Int. J. Solids Struct. 4, 1125–1135 (1986)CrossRefGoogle Scholar
  62. 62.
    Hartmann, F.: The Mathematical Foundation of Structural Mechanics. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  63. 63.
    Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Faculty of Civil and Geodetic EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations