Acta Mechanica

, Volume 230, Issue 1, pp 225–241 | Cite as

Verification of a micro-mechanical approach for the investigation of progressive damage in composite laminates

  • Mahdi FakoorEmail author
  • Seyed Mohammad Navid Ghoreishi
Original Paper


In this paper, micro-damage mechanics (MIDM) and macro-damage mechanics (MADM) are employed to study the progressive damage in composite laminates. Firstly, a novel method for progressive damage modeling of composite laminates is proposed based on MADM rules. In the MADM method, a new exponential behavior for the softening regime of damaged plies is proposed from comprehensive experimental tests on glass/epoxy composite laminates with a variety of the stacking sequence. Then, a MIDM model is employed to study the mechanical behavior of composite laminates with micro-cracks. The effective elastic moduli and Poisson’s ratio in damaged composite laminates containing a large number of micro-cracks are determined by utilizing variational methods. Finally, the proposed exponential behavior of damaged plies based on MADM rules is verified by utilizing a MIDM model. The resulting coincidence of MADM and MIDM proves that the proposed method can accurately simulate the behavior of damaged plies in glass/epoxy composite laminates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the financial support of University of Tehran for this research under Grant number 28686/01/01.


  1. 1.
    Lu, H., Guo, L., Liu, G., et al.: Progressive damage investigation of 2.5 D woven composites under quasi-static tension. Acta Mech. (2018).
  2. 2.
    Meraghni, F., Desrumaux, F., Benzeggagh, M.L.: Implementation of a constitutive micromechanical model for damage analysis in glass mat reinforced composite structures. Compos. Sci. Technol. 62, 2087–2097 (2002)CrossRefGoogle Scholar
  3. 3.
    Yang, B., Kim, B., Lee, H.-K.: Micromechanics-based viscoelastic damage model for particle-reinforced polymeric composites. Acta Mech. 223, 1307–1321 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Singh, C.V., Talreja, R.: Analysis of multiple off-axis ply cracks in composite laminates. Int. J. Solids Struct. 45, 4574–4589 (2008)CrossRefGoogle Scholar
  5. 5.
    Gupta, A., Patel, B., Nath, Y.: Nonlinear static analysis of composite laminated plates with evolving damage. Acta Mech. 224, 1285–1298 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feng, X.-Q., Yu, S.-W.: Damage micromechanics for constitutive relations and failure of microcracked quasi-brittle materials. Int. J. Damage Mech. 19, 911–948 (2010)CrossRefGoogle Scholar
  7. 7.
    Lezgy-Nazargah, M.: Assessment of refined high-order global-local theory for progressive failure analysis of laminated composite beams. Acta Mech. 228, 1923–1940 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Meraghni, F., Benzeggagh, M.L.: Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos. Sci. Technol. 55, 171–186 (1995)CrossRefGoogle Scholar
  9. 9.
    Meraghni, F., Blakeman, C.J., Benzeggagh, M.L.: Effect of interfacial decohesion on stiffness reduction in a random discontinuous-fibre composite containing matrix microcracks. Compos. Sci. Technol. 56, 541–555 (1996)CrossRefGoogle Scholar
  10. 10.
    Voyiadjis, G.Z., Taqieddin, Z.N., Kattan, P.I.: Micromechanical approach to damage mechanics of composite materials with fabric tensors. Compos. Part B Eng. 38, 862–877 (2007)CrossRefGoogle Scholar
  11. 11.
    Singh, C.V., Talreja, R.: Evolution of ply cracks in multidirectional composite laminates. Int. J. Solids Struct. 47, 1338–1349 (2010)CrossRefGoogle Scholar
  12. 12.
    Nobeen, N.S., Zhong, Y., Francis, B.A.P., Ji, X., Chia, E.S.M., Joshi, S.C., Chen, Z.: Constituent materials micro-damage modeling in predicting progressive failure of braided fiber composites. Compos. Struct. 145, 194–202 (2016)CrossRefGoogle Scholar
  13. 13.
    Praud, F., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F.: Hybrid micromechanical-phenomenological modelling of anisotropic damage and anelasticity induced by micro-cracks in unidirectional composites. Compos. Struct. 182, 223–236 (2017)CrossRefGoogle Scholar
  14. 14.
    Kachanov, L.: On the time to failure under creep conditions, Izv. AN SSSR Otd. Tekhn. Nauk 8, 8 (1958)Google Scholar
  15. 15.
    Matzenmiller, A., Lubliner, J., Taylor, R.: A constitutive model for anisotropic damage in fiber-composites. Mech. Mater. 20, 125–152 (1995)CrossRefGoogle Scholar
  16. 16.
    Jordan, J.B., Naito, C.J., Haque, B.Z.G.: Progressive damage modeling of plain weave E-glass/phenolic composites. Compos. Part B Eng. 61, 315–323 (2014)CrossRefGoogle Scholar
  17. 17.
    Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber-reinforced materials. Compos. Part A Appl. Sci. Manuf. 38, 2333–2341 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang, L., Zheng, C., Luo, H., Wei, S., Wei, Z.: Continuum damage modeling and progressive failure analysis of carbon fiber/epoxy composite pressure vessel. Compos. Struct. 134, 475–482 (2015)CrossRefGoogle Scholar
  19. 19.
    Barbero, E., Cosso, F., Roman, R., Weadon, T.: Determination of material parameters for Abaqus progressive damage analysis of E-glass epoxy laminates. Compos. Part B Eng. 46, 211–220 (2013)CrossRefGoogle Scholar
  20. 20.
    Rafiee, R., Torabi, M.A.: Stochastic prediction of burst pressure in composite pressure vessels. Compos. Struct. 185, 573–583 (2018)CrossRefGoogle Scholar
  21. 21.
    Rafiee, R., Torabi, M.A., Maleki, S.: Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation. Polym. Test. 67, 322–330 (2018)CrossRefGoogle Scholar
  22. 22.
    Bogenfeld, R., Kreikemeier, J.: A tensorial based progressive damage model for fiber reinforced polymers. Compos. Struct. 168, 608–618 (2017)CrossRefGoogle Scholar
  23. 23.
    Kotelnikova-Weiler, N., Baverel, O., Ducoulombier, N., Caron, J.-F.: Progressive damage of a unidirectional composite with a viscoelastic matrix, observations and modelling. Compos. Struct. 188, 297–312 (2018)CrossRefGoogle Scholar
  24. 24.
    Tay, T., Liu, G., Yudhanto, A., Tan, V.: A micro–macro approach to modeling progressive damage in composite structures. Int. J. Damage Mech. 17, 5–28 (2008)CrossRefGoogle Scholar
  25. 25.
    Lee, C.-S., Kim, J.-H., Kim, S.-K., Ryu, D.-M., Lee, J.-M.: Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method. Compos. Struct. 121, 406–419 (2015)CrossRefGoogle Scholar
  26. 26.
    Luo, H., Yan, Y., Zhang, T., He, Z., Wang, S.: Progressive failure numerical simulation and experimental verification of carbon-fiber composite corrugated beams under dynamic impact. Polym. Test. 63, 12–24 (2017)CrossRefGoogle Scholar
  27. 27.
    Maimí, P., Camanho, P.P., Mayugo, J., Dávila, C.: A continuum damage model for composite laminates: part I–constitutive model. Mech. Mater. 39, 897–908 (2007)CrossRefGoogle Scholar
  28. 28.
    Maimí, P., Camanho, P.P., Mayugo, J.A., Dávila, C.G.: A continuum damage model for composite laminates: part II—computational implementation and validation. Mech. Mater. 39, 909–919 (2007)CrossRefGoogle Scholar
  29. 29.
    Ridha, M., Tan, V.B.C., Tay, T.E.: Traction-separation laws for progressive failure of bonded scarf repair of composite panel. Compos. Struct. 93, 1239–1245 (2011)CrossRefGoogle Scholar
  30. 30.
    Varna, J., Berglund, L.: Multiple transverse cracking and stiffness reduction in cross-ply laminates. J Compos Technol. Res. 13(2), 97–106 (1991)CrossRefGoogle Scholar
  31. 31.
    Varna, J., Berglund, A.: Thermo-elastic properties of composite laminates with transverse cracks. J. Compos. Technol. Res. 16(1), 77–87 (1994)CrossRefGoogle Scholar
  32. 32.
    Aveston, J., Kelly, A.: Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352–362 (1973)CrossRefGoogle Scholar
  33. 33.
    Voyiadjis, G.Z., Kattan, P.I., Taqieddin, Z.N.: Continuum approach to damage mechanics of composite materials with fabric tensors. Int. J. Damage Mech. 16, 301–329 (2007)CrossRefGoogle Scholar
  34. 34.
    Kundalwal, S., Ray, M.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225, 2621–2643 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hashin, Z.: Analysis of cracked laminates: a variational approach. Mech. Mater. 4, 121–136 (1985)CrossRefGoogle Scholar
  36. 36.
    Tong, J., Guild, F.J., Ogin, S.L., Smith, P.A.: On matrix crack growth in quasi-isotropic laminates—I. Exp. Investig. Compos. Sci. Technol. 57, 1527–1535 (1997)CrossRefGoogle Scholar
  37. 37.
    Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Raton (1998)Google Scholar
  38. 38.
    Kaw, A.K.: Mechanics of Composite Materials. CRC Press, Boca Raton (2005)zbMATHGoogle Scholar
  39. 39.
    Christensen, R.M.: Mechanics of Composite Materials. Courier Corporation, New York (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Mahdi Fakoor
    • 1
    Email author
  • Seyed Mohammad Navid Ghoreishi
    • 1
  1. 1.Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran

Personalised recommendations