Advertisement

Elastic interaction between dislocations and a cavity embedded in a biaxially stressed solid

  • Jérôme Colin
Original Paper
  • 11 Downloads

Abstract

The interaction between edge dislocations and a cylindrical circular cavity embedded in an infinite-size solid submitted to a biaxial stress has been studied from a theoretical point of view. In the case where a first dislocation has reached the cavity, a (meta)stable equilibrium position has been found for the second dislocation gliding from infinity in the same plane as the one of the first dislocation. The critical value of the stress for which the second dislocation also reaches the cavity has been determined. An equivalent study has then been performed for the following gliding dislocations. The possibility of formation from the cavity of another dislocation still in the same gliding plane but in the diametrically opposite part of the solid has finally been analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Matthews, J.W., Blakeslee, A.E.: Defects in epitaxial multilayers. J. Cryst. Growth 27, 118–125 (1974)Google Scholar
  2. 2.
    Johnson, H.T., Freund, L.B.: Mechanics of coherent and dislocated island morphologies in strained epitaxial material systems. J. Appl. Phys. 81(9), 6081–6089 (1997)CrossRefGoogle Scholar
  3. 3.
    Gutkin, M.Y., Ovid’ko, I.A., Sheinerman, A.G.: Misfit dislocations in wire composite solids. J. Phys. Condens. Matter 12, 5391–5401 (2000)CrossRefGoogle Scholar
  4. 4.
    Liang, Y., Nix, W.D., Griffin, P.B., Plummer, J.D.: Critical thickness enhancement of epitaxial SiGe films grown on small structures. J. Appl. Phys. 97, 043519 (2005)CrossRefGoogle Scholar
  5. 5.
    Fang, Q.H., Liu, Y.W., Chen, J.H.: Misfit dislocation dipoles and critical parameters of buried strained nanoscale inhomogeneity. Appl. Phys. Lett. 92, 121923 (2008)CrossRefGoogle Scholar
  6. 6.
    Pan, J., Shibutani, Y.: Formation of prismatic dislocation loop around a spherical inclusion using level set dislocation dynamics. J. Soil Mech. Mater Eng. 6, 913–924 (2012)CrossRefGoogle Scholar
  7. 7.
    Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y., Shodja, H.M.: Surface/interface effects on the elastic behavior of a screw dislocation in an eccentric core–shell nanowire. Int. J. Solids Struct. 49, 1665–1675 (2012)CrossRefGoogle Scholar
  8. 8.
    Kolesnikova, A.L., Gutkin, M.Y., Krasnitckii, S.A., Romanov, A.E.: Circular dislocation loops in elastic bodies with spherical free surfaces. Int. J. Solids Struct. 50, 1839–1857 (2013)CrossRefGoogle Scholar
  9. 9.
    Gutkin, M.Y., Kolesnikova, A.L., Krasnitckii, S.A., Romanov, A.E., Shalkovskii, A.G.: Misfit dislocation loops in hollow core–shell nanoparticles. Scr. Mater 83, 1–4 (2014)CrossRefGoogle Scholar
  10. 10.
    Gutkin, M.Y., Smirnov, A.M.: Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops. Acta Mater. 88, 91–101 (2015)CrossRefGoogle Scholar
  11. 11.
    Krauchanka, M.Y., Krasnitckii, S.A., Gutkin, M.Y., Kolesnikova, A.L., Romanov, A.E., Aifantis, E.C.: Generation of circular prismatic dislocation loops in decahedral small particles. Scr. Mater 146, 77–81 (2018)CrossRefGoogle Scholar
  12. 12.
    Xu, X.T., Tang, F.L., Xue, H.T., Yu, W.Y., Zhu, L., Rui, Z.Y.: Molecular dynamics simulations of void shrinkage in—TiAl single crystal. Comput. Mater. Sci. 107, 5865 (2015)CrossRefGoogle Scholar
  13. 13.
    Ding, J., Zhao, H.-N., Wang, L.-S., Huang, X., Wang, J., Song, K., Lu, S.-Q., Xeng, X.-G.: Influence of loading directions on dislocation slip mechanism of nanotwinned Ni with void defect at the twin boundary. Comput. Mater. Sci. 152, 1–11 (2018)CrossRefGoogle Scholar
  14. 14.
    Huang, M., Li, Z., Wang, C.: Discrete dislocation dynamics modelling of microvoid growth and its intrinsic mechanism in single crystals. Acta Mater. 55, 1387–1396 (2007)CrossRefGoogle Scholar
  15. 15.
    Segurado, J., Llorca, J.: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals. Int. J. Plast. 26, 806–819 (2010)CrossRefGoogle Scholar
  16. 16.
    Lubarda, V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48, 648–660 (2011)CrossRefGoogle Scholar
  17. 17.
    Lubarda, V.A.: Emission of dislocations from nanovoids under combined loading. Int. J. Plast. 27, 181–200 (2011)CrossRefGoogle Scholar
  18. 18.
    Lubarda, V.A.: A pileup of edge dislocations against an inclined bimetallic interface. Mech. Mater. 117, 32–40 (2018)CrossRefGoogle Scholar
  19. 19.
    Lubarda, V.A.: On elastic fields of perfectly bonded and sliding circular inhomogeneities in an infinite matrix. Acta Mech. 229, 1597–1611 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 2nd edn, pp. 29–130. Mc Graw-Hill, New York (1951)zbMATHGoogle Scholar
  21. 21.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7, pp. 27–30. Pergamon Press Ltd., Oxford (1970)Google Scholar
  22. 22.
    Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–189 (1964)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn, pp. 59–95. Wiley, Hoboken (1982)Google Scholar
  24. 24.
    Peach, M., Köhler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut P’, Université de Poitiers, ENSMAFuturoscope-Chasseneuil cedexFrance
  2. 2.Dipartimento di Scienza dei MaterialiMilanItaly

Personalised recommendations