An immersed boundary method for flows with dense particle suspensions

  • Mohd Hazmil Abdol Azis
  • Fabien Evrard
  • Berend van Wachem
Original Paper


The immersed boundary method (IBM) is a well-suited tool for the direct numerical simulation of flows with dense particle suspensions, which feature strong and complex flow-particle and particle–particle interactions. With the aim to model such flows, this paper proposes to extend the Regularised Discrete Momentum Forcing (RDMF-) IBM of Abdol Azis et al. (2018) to immersed boundaries (IBs) whose motion is coupled to the flow. A modification to the direct-forcing formulation, resulting in an offset of the imposed no-slip boundary from a moving immersed boundary, is proposed. This offset is exploited in an iterative strong flow-particle coupling scheme, where the boundary forces are applied at the location of the IB known from the previous time level, while correctly enforcing the no-slip condition at the new location of the IB. This avoids having to reconstruct the interpolation and spreading stencils for every linear iteration of the flow-particle coupling, therefore reducing the computational load of the method. A technique to ensure the stable modelling of flows involving light particles is also presented and is shown to stably cope with a wide range of particle–fluid density ratios. The framework is validated by comparing the results of the simulation of a single sedimenting sphere with published experimental results. Simulations of the fluidisation of heavy rigid particles, as well as of the ascent of closely packed light particles, are also presented. Use of the radius retraction procedure, to compensate for the diffuse representation of the smooth-interface IBM, is demonstrated to consistently yield significant improvements for moving IB cases with low to intermediate Reynolds numbers. The present framework shows good stability properties for a wide range of flow regimes with concentrated particle suspensions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Abdol Azis, M.H., Evrard, F., van Wachem, B.: An immersed boundary method for incompressible flows in complex domains. Submitted (2018)Google Scholar
  2. 2.
    Abraham, F.F.: Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids 13(8), 2194 (1970)CrossRefGoogle Scholar
  3. 3.
    Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biegert, E., Vowinckel, B., Meiburg, E.: A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. J. Comput. Phys. 340(March), 105–127 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Borazjani, I., Ge, L., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16), 7587–7620 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Breugem, W.-P.: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231(13), 4469–4498 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Causin, P., Gerbeau, J., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Eng. 194(42–44), 4506–4527 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Tullio, M., Pascazio, G.: A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325(August), 201–225 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Deen, N.G., Kriebitzsch, S.H.L., van der Hoef, M.A., Kuipers, J.A.M.: Direct numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem. Eng. Sci. 81, 329–344 (2012)CrossRefGoogle Scholar
  10. 10.
    Denner, F., van der Heul, D.R., Oud, G.T., Villar, M.M., da Silveira Neto, A., van Wachem, B.G.M.: Comparative study of mass-conserving interface capturing frameworks for two-phase flows with surface tension. Int. J. Multiphase Flow 61, 37–47 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Glowinski, R., Pan, T., Hesla, T., Joseph, D., Périaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Haeri, S., Shrimpton, J.: On the application of immersed boundary, fictitious domain and body-conformal mesh methods to many particle multiphase flows. Int. J. Multiphase Flow 40, 38–55 (2012)CrossRefGoogle Scholar
  13. 13.
    Hamming, R.W.: Stable predictor–corrector methods for ordinary differential equations. J. ACM 6(1), 37–47 (1959)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Irons, B.M., Tuck, R.C.: A version of the Aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1(3), 275–277 (1969)CrossRefGoogle Scholar
  15. 15.
    Kempe, T., Fröhlich, J.: An improved immersed boundary method with direct forcing for the simulation of particle laden flows. J. Comput. Phys. 231(9), 3663–3684 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kempe, T., Fröhlich, J.: Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J. Fluid Mech. 709, 445–489 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Küttler, U., Wall, W.A.: Vector extrapolation for strong coupling fluid–structure interaction solvers. J. Appl. Mech. 76(2), 021205 (2009)CrossRefGoogle Scholar
  18. 18.
    Le Tallec, P.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190(24–25), 3039–3067 (2001)CrossRefGoogle Scholar
  19. 19.
    Mohaghegh, F., Udaykumar, H.S.: Comparison of sharp and smoothed interface methods for simulation of particulate flows I: fluid structure interaction for moderate Reynolds numbers. Comput. Fluids 140, 39–58 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mohaghegh, F., Udaykumar, H.S.: Comparison of sharp and smoothed interface methods for simulation of particulate flows II: inertial and added mass effects. Comput. Fluids 143, 103–119 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mohd-Yusof, J.: Combined immersed boundary/B-spline methods for simulation of flow in complex geometries. In: Center for Turbulence Research Annual Research Briefs, pp. 317–328 (1997)Google Scholar
  22. 22.
    Mordant, N., Pinton, J.F.: Velocity measurement of a settling sphere. Eur. Phys. J. B 18, 343–352 (2000)CrossRefGoogle Scholar
  23. 23.
    Onural, L.: Impulse functions over curves and surfaces and their applications to diffraction. J. Math. Anal. Appl. 322(1), 18–27 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pan, Y., Tanaka, T., Tsuji, Y.: Turbulence modulation by dispersed solid particles in rotating channel flows. Int. J. Multiphase Flow 28(4), 527–552 (2002)CrossRefGoogle Scholar
  25. 25.
    Park, H., Pan, X., Lee, C., Choi, J.-I.: A pre-conditioned implicit direct forcing based immersed boundary method for incompressible viscous flows. J. Comput. Phys. 314, 774–799 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pinelli, A., Naqavi, I., Piomelli, U., Favier, J.: Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comput. Phys. 229(24), 9073–9091 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Roma, A.M., Peskin, C.S., Berger, M.J.: An adaptive version of the immersed boundary method. J. Comput. Phys. 153(2), 509–534 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Schwarz, S., Kempe, T., Fröhlich, J.: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method. J. Comput. Phys. 281, 591–613 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sotiropoulos, F., Yang, X.: Immersed boundary methods for simulating fluid–structure interaction. Prog. Aerosp. Sci. 65, 1–21 (2014)CrossRefGoogle Scholar
  31. 31.
    Taira, K., Colonius, T.: The immersed boundary method: a projection approach. J. Comput. Phys. 225(2), 2118–2137 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    ten Cate, A., Nieuwstad, C.H., Derksen, J.J., van den Akker, H.E.A.: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys. Fluids 14(11), 4012 (2002)CrossRefGoogle Scholar
  33. 33.
    Topin, V., Dubois, F., Monerie, Y., Perales, F., Wachs, A.: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Non-Newton. Fluid Mech. 166(1–2), 63–72 (2011)CrossRefGoogle Scholar
  34. 34.
    Tschisgale, S., Kempe, T., Fröhlich, J.: A new approach to define a non-iterative immersed boundary method for spherical particles of arbitrary density ratio. J. Comput. Phys. 339, 432–452 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Uhlmann, M.: Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20(5), 53305 (2008)CrossRefGoogle Scholar
  37. 37.
    Wan, D., Turek, S.: An efficient multigrid-FEM method for the simulation of solid–liquid two phase flows. J. Comput. Appl. Math. 203(2), 561–580 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wang, H., Chessa, J., Liu, W.K., Belytschko, T.: The immersed/fictitious element method for fluid-structure interaction: volumetric consistency, compressibility and thin members. Int. J. Numer. Methods Eng. 74(1), 32–55 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, Z., Fan, J., Luo, K.: Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int. J. Multiphase Flow 34(3), 283–302 (2008)CrossRefGoogle Scholar
  40. 40.
    Xiao, C.N., Denner, F., van Wachem, B.G.: Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries. J. Comput. Phys. 346, 91–130 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Yang, J., Preidikman, S., Balaras, E.: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies. J. Fluids Struct. 24(2), 167–182 (2008)CrossRefGoogle Scholar
  42. 42.
    Yang, J., Stern, F.: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions. J. Comput. Phys. 231(15), 5029–5061 (2012)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yu, Z., Shao, X.: A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227(1), 292–314 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Mohd Hazmil Abdol Azis
    • 1
    • 2
  • Fabien Evrard
    • 3
  • Berend van Wachem
    • 3
  1. 1.Thermofluids Division, Department of Mechanical EngineeringImperial College LondonLondonUK
  2. 2.Department of Thermofluids, Faculty of Mechanical EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Lehrstuhl für Mechanische Verfahrenstechnik, Fakultät für Verfahrens- und SystemtechnikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations