Advertisement

Acta Mechanica

, Volume 229, Issue 12, pp 4927–4944 | Cite as

A dynamic beam model for the motility of Listeria monocytogenes

  • Florian ZaussingerEmail author
Original Paper
  • 48 Downloads

Abstract

A non-conservative Lagrangian is used to derive a dynamic beam equation in a moving reference frame to describe the motility of Listeria monocytogenes. Bending, stretching, and frictional forces are incorporated to describe the kinematics of the moving actin filament network. Adapted boundary conditions are able to simulate the influence of the bacterium on the tail as well as the polymerization process. A semi-implicit numerical operator splitting method has been developed to solve the nonlinear equations in the plane. The model has been validated on existing force-velocity relationships and measurements for realistic physical model parameters. In particular, the fictional losses due to substrate-tail adhesion have been analyzed by a linear and a nonlinear approach. Numerical simulations are performed for varying polymerization speeds, friction, and bending parameters. Complex trajectories of the actin tail are found by adjusting the bending properties of the attaching actin filament cluster. The results reveal that the present model is able to predict and reproduce actin-based motions observed in experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author thanks C. Schmeiser and Y. Dolak-Struß (both University of Vienna) for extensive discussions and improvements.

References

  1. 1.
    Cameron, L.A., Footer, M.J., van Oudenaarden, A., Theriot, J.A.: Motility of acta protein-coated microspheres driven by actin polymerization. Proc. Natl. Acad. Sci. 96(9), 4908–4913 (1999)CrossRefGoogle Scholar
  2. 2.
    Cameron, L.A., Svitkina, T.M., Vignjevic, D., Theriot, J.A., Borisy, G.G.: Dendritic organization of actin comet tails. Curr. Biol. 11(2), 130–135 (2001)CrossRefGoogle Scholar
  3. 3.
    Chung, C., Kao, I.: Green’s function and forced vibration response of damped axially moving wire. J. Vib. Control 18(12), 1798–1808 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ding, H., Chen, L.: On two transverse nonlinear models of axially moving beams. Sci. China Ser. E: Technol. Sci. 52(3), 743–751 (2009)CrossRefGoogle Scholar
  5. 5.
    Ding, H., Chen, L.Q.: Natural frequencies of nonlinear vibration of axially moving beams. Nonlinear Dyn. 63(1), 125–134 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dominguez, R., Holmes, K.C.: Actin structure and function. Annu. Rev. Biophys. 40, 169–186 (2011)CrossRefGoogle Scholar
  7. 7.
    Epstein, M.: Thin-walled beams as directed curves. Acta Mech. 33(3), 229–242 (1979)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerbal, F., Chaikin, P., Rabin, Y., Prost, J.: An elastic analysis of listeria monocytogenes propulsion. Biophys. J. 79(5), 2259–2275 (2000)CrossRefGoogle Scholar
  9. 9.
    Gerbal, F., Laurent, V., Ott, A., Carlier, M.F., Chaikin, P., Prost, J.: Measurement of the elasticity of the actin tail of listeria monocytogenes. Eur. Biophys. J. 29(2), 134–140 (2000)CrossRefGoogle Scholar
  10. 10.
    Huang, F., Mote Jr., C.D.: On the translating damping caused by a thin viscous fluid layer between a translating string and a translating rigid surface. J. Sound Vib. 181(2), 251–260 (1995)CrossRefGoogle Scholar
  11. 11.
    Kang, H., Perlmutter, D.S., Shenoy, V.B., Tang, J.X.: Observation and kinematic description of long actin tracks induced by spherical beads. Biophys. J. 99(9), 2793–802 (2010)CrossRefGoogle Scholar
  12. 12.
    Karlsen, K., Lie, K.A., Natvig, J., Nordhaug, H., Dahle, H.: Operator splitting methods for systems of convection-diffusion equations: nonlinear error mechanisms and correction strategies. J. Comput. Phys. 173(2), 636–663 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee, H.P., Ng, T.Y.: Dynamic response of a cracked beam subject to a moving load. Acta Mech. 106(3), 221–230 (1994)CrossRefGoogle Scholar
  14. 14.
    Lin, Y.: Mechanics model for actin-based motility. Phys. Rev. E 79(2), 021916 (2009)CrossRefGoogle Scholar
  15. 15.
    Madenci, E., Barut, A., Guven, I.: 16 - Stress analysis of bonded patch and scarf repairs in composite structures. In: Camanho, P., Tong, L. (eds.) Composite Joints and Connections, pp. 463–483. Woodhead Publishing (2011).  https://doi.org/10.1533/9780857094926.2.463 CrossRefGoogle Scholar
  16. 16.
    Marcy, Y., Prost, J., Carlier, M.F., Sykes, C.: Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. 101(16), 5992–5997 (2004)CrossRefGoogle Scholar
  17. 17.
    Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin. Mech. Thermodyn. 25(2), 127–146 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    McGrath, J.L., Eungdamrong, N.J., Fisher, C.I., Peng, F., Mahadevan, L., Mitchison, T.J., Kuo, S.C.: The force-velocity relationship for the actin-based motility of listeria monocytogenes. Curr. Biol. 13(4), 329–32 (2003)CrossRefGoogle Scholar
  19. 19.
    Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71(6), 3030–3045 (1996)CrossRefGoogle Scholar
  20. 20.
    Mogilner, A., Oster, G.: Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84(3), 1591–1605 (2003)CrossRefGoogle Scholar
  21. 21.
    Olbris, D.J., Herzfeld, J.: Reconstitution of listeria motility: implications for the mechanism of force transduction. Biochim. Biophys. Acta 1495(2), 140–9 (2000)CrossRefGoogle Scholar
  22. 22.
    Peskin, C., Odell, G., Oster, G.: Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65(1), 316–324 (1993)CrossRefGoogle Scholar
  23. 23.
    Reddy, J.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, London (2002)Google Scholar
  24. 24.
    Reddy, J.: Theory and Analysis of Elastic Plates and Shells, 2nd ed. Series in Systems and Control, Taylor & Francis (2006)Google Scholar
  25. 25.
    Sandilo, S.H., van Horssen, W.T.: On boundary damping for an axially moving tensioned beam. J. Vib. Acoust. 134(1), 011005 (2012)CrossRefGoogle Scholar
  26. 26.
    Sharpe, W.: Springer Handbook of Experimental Solid Mechanics. Gale Virtual Reference Library. Springer, Berlin (2008)CrossRefGoogle Scholar
  27. 27.
    Shenoy, V.B., Tambe, D.T., Prasad, A., Theriot, J.A.: A kinematic description of the trajectories of listeria monocytogenes propelled by actin comet tails. Proc. Natl. Acad. Sci. USA 104(20), 8229–34 (2007)CrossRefGoogle Scholar
  28. 28.
    Tabarrok, B., Cleghorn, W.L.: Application of principle of least action to beam problems. Acta Mech. 142(1), 235–243 (2000)CrossRefGoogle Scholar
  29. 29.
    Theriot, J.A., Mitchison, T.J., Tilney, L.G., Portnoy, D.A.: The rate of actin-based motility of intracellular listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257 EP (1992)CrossRefGoogle Scholar
  30. 30.
    Tilney, L.G.: Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, listeria monocytogenes. J. Cell Biol. 109(4), 1597–1608 (1989)CrossRefGoogle Scholar
  31. 31.
    Wen, F.L., Leung, K.T., Chen, H.Y.: Trajectories of listeria-type motility in two dimensions. Phys. Rev. E 86(6), 061902 (2012)CrossRefGoogle Scholar
  32. 32.
    Wen, F.L., Leung, K.T., Chen, H.Y.: Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions. Phys. Rev. E 94(1), 012401 (2016)CrossRefGoogle Scholar
  33. 33.
    Wickert, J.A., Mote Jr., C.D.: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57(3), 738–744 (1990)CrossRefGoogle Scholar
  34. 34.
    Zhang, J.L., Vida, C., Yuan, Y., Hellmich, C., Mang, H.A., Pichler, B.: A hybrid analysis method for displacement-monitored segmented circular tunnel rings. Eng. Struct. 148, 839–856 (2017)CrossRefGoogle Scholar
  35. 35.
    Zupan, E., Saje, M., Zupan, D.: On a virtual work consistent three-dimensional Reissner-Simo beam formulation using the quaternion algebra. Acta Mech. 224(8), 1709–1729 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerodynamics and Fluid MechanicsBrandenburg University of Technology Cottbus-SenftenbergCottbusGermany

Personalised recommendations