Acta Mechanica

, Volume 230, Issue 1, pp 121–136 | Cite as

Heat-pulse propagation in thermoelastic systems: application to graphene

  • A. Sellitto
  • V. A. CimmelliEmail author
Original Paper


We study the consequences of thermoelastic coupling on heat and stress pulse propagation along equilibrium and nonequilibrium reference states. We use a generalized heat-transport equation accounting for relaxational and nonlinear effects. We compare the obtained results with those for heat pulses without thermoelastic coupling and with previous results obtained by using the relaxational Maxwell–Cattaneo equation for the heat flux without nonlinear terms. The difference of the speed of heat pulses along and against an imposed average heat flux in nonequilibrium states is also obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



A. S. cordially thanks the Department of Physics of the Autonomous University of Barcelona (Spain) for the received hospitality in the period from April 18 to 29, 2017. A. S. acknowledges the University of Salerno for the financial supports under grant no. 300395FRB16CIARL and grant “Fondo per il finanziamento iniziale dell’attività di ricerca”. V. A. C. acknowledges the financial support of the University of Basilicata under grants RIL 2013 and RIL 2015. Both authors also acknowledge the Italian National Group of Mathematical Physics (GNFM-INdAM).


  1. 1.
    Nowacki, W.: Thermoelasticity, second edn. Pergamon, Oxford (1986)zbMATHGoogle Scholar
  2. 2.
    Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford Science Publications, Oxford (2010)zbMATHGoogle Scholar
  3. 3.
    Chandrasekharaiah, D.S.: Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)CrossRefGoogle Scholar
  4. 4.
    Straughan, B.: Heat Waves. Springer, Berlin (2011)CrossRefGoogle Scholar
  5. 5.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, second edn. Springer, New York (1998)CrossRefGoogle Scholar
  6. 6.
    Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Lebon, G., Jou, D., Casas-Vázquez, J.: Understanding Non-equilibrium Thermodynamics. Springer, Berlin (2008)CrossRefGoogle Scholar
  8. 8.
    Cimmelli, V.A.: Different thermodynamic theories and different heat conduction laws. J. Non-Equilib. Thermodyn. 34, 299–333 (2009)CrossRefGoogle Scholar
  9. 9.
    Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics, fourth revised edn. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Tzou, D .Y.: Macro- to Microscale Heat Transfer: The Lagging Behaviour, second edn. Wiley, Chichester (2014)Google Scholar
  11. 11.
    Guo, Y., Wang, M.: Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sellitto, A., Cimmelli, V. A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6 of SEMA-SIMAI Springer Series. Springer (2016)Google Scholar
  13. 13.
    Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)CrossRefGoogle Scholar
  14. 14.
    Popov, E.B.: Dynamic coupled problem of thermoelasticity for a half-space taking account of the finiteness of the heat propagation velocity. J. Appl. Math. Mech. 31, 349–356 (1967)CrossRefGoogle Scholar
  15. 15.
    Achenbach, J.D.: The influence of heat conduction on propagating stress jumps. J. Mech. Phys. Solids 16, 272–282 (1968)CrossRefGoogle Scholar
  16. 16.
    Nayfeh, A., Nemat-Nasser, S.: Thermoelastic waves in solids with thermal relaxation. Acta Mech. 12, 53–69 (1971)CrossRefGoogle Scholar
  17. 17.
    Sinha, A.N., Sinha, S.B.: Velocity of Rayleigh waves with thermal relaxation in time. Acta Mech. 23, 159–166 (1975)CrossRefGoogle Scholar
  18. 18.
    Sawatzky, R.P., Moodie, T.B.: On thermoelastic transients in a general theory of heat conduction with finite wave speeds. Acta Mech. 56, 165–187 (1985)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sharma, J.N., Singh, H.: Generalized thermoelastic waves in anisotropic media. J. Acoust. Soc. Am. 85, 1407–1413 (1989)CrossRefGoogle Scholar
  20. 20.
    Hawwa, M.A., Nayfeh, A.H.: Thermoelastic waves in a laminated composite with a second sound effect. J. Appl. Phys. 80, 2733–2738 (1996)CrossRefGoogle Scholar
  21. 21.
    Verma, K.L., Hasebe, N.: Wave propagation in transversely isotropic plates in generalized thermoelasticity. Arch. Appl. Mech. 72, 470–482 (2002)CrossRefGoogle Scholar
  22. 22.
    Puri, P., Jordan, P.M.: On the propagation of harmonic plane waves under the two-temperature theory. Int. J. Eng. Sci. 44, 1113–1126 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kumar, R., Mukhopadhyay, S.: Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity. Int. J. Eng. Sci. 48, 128–139 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Prasad, R., Kumar, R., Mukhopadhyay, S.: Propagation of harmonic plane waves under thermoelasticity with dual-phase-lags. Int. J. Eng. Sci. 48, 2028–2043 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, W., Chen, M.: Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback. Cont. Mech. Thermodyn. 29, 731–746 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, X., Xu, X.: Thermoelastic wave induced by pulsed laser heating. Appl. Phys. A 73, 107–114 (2001)CrossRefGoogle Scholar
  27. 27.
    Jun Yu, Y., Tian, X.-G., Xiong, Q.-L.: Nonlocal thermoelasticity based on nonlocal heat conduction and nonlocal elasticity. Eur. J. Mech. A-Solid. 60, 238–253 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlocal effects and second sound in a nonequilibrium steady state. Phys. Rev. B 79, 014303 (2009)CrossRefGoogle Scholar
  29. 29.
    Jou, D., Cimmelli, V.A., Sellitto, A.: Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers. Phys. Lett. A 373, 4386–4392 (2009)CrossRefGoogle Scholar
  30. 30.
    Cimmelli, V.A., Sellitto, A., Jou, D.: Nonlinear evolution and stability of the heat flow in nanosystems: beyond linear phonon hydrodynamics. Phys. Rev. B 82, 184302 (2010)CrossRefGoogle Scholar
  31. 31.
    Yao, W.-J., Cao, B.-Y.: Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin. Sci. Bull. 59, 3495–3503 (2004)CrossRefGoogle Scholar
  32. 32.
    Cepellotti, A., Fugallo, G., Paulatto, L., Lazzeri, M., Mauri, F., Marzari, N.: Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 6, 6400 (2015)CrossRefGoogle Scholar
  33. 33.
    Yao, W.-J., Cao, B.-Y.: Triggering wave-domain heat conduction in graphene. Phys. Lett. A 380, 2105–2110 (2016)CrossRefGoogle Scholar
  34. 34.
    Balandin, A.A., Ghosh, S., Baoand, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.-N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  35. 35.
    Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)CrossRefGoogle Scholar
  36. 36.
    Nika, D .L., Balandin, A .A.: Two-dimensional phonon transport in graphene. J. Phys.: Condens. Matter 24, 233203 (2012)Google Scholar
  37. 37.
    Pop, E., Varshney, V., Roy, A.: Thermal properties of graphene: fundamentals and applications. MRS Bull. 37, 1273–1281 (2012)CrossRefGoogle Scholar
  38. 38.
    Tang, Q.H., Liu, X.L., Chen, C., Wang, T.C.: A constitutive equation of thermoelasticity for solid materials. J. Therm. Stresses 38, 359–376 (2015)CrossRefGoogle Scholar
  39. 39.
    Shen, L., Shen, H.-S., Zhang, C.-L.: Temperature-dependent elastic properties of single layer graphene sheets. Mater. Des. 31, 4445–4449 (2010)CrossRefGoogle Scholar
  40. 40.
    Unnikrishnan, V.U., Unnikrishnan, G.U., Reddy, J.N.: Multiscale nonlocal thermo-elastic analysis of graphene nanoribbons. J. Therm. Stresses 32, 1087–1100 (2009)CrossRefGoogle Scholar
  41. 41.
    Jackson, H.E., Walker, C.T.: Thermal conductivity, second sound, and phonon-phonon interactions in NaF. Phys. Rev. B 3, 1428–1439 (1971)CrossRefGoogle Scholar
  42. 42.
    Coleman, B.D., Newman, D.C.: Implications of a nonlinearity in the theory of second sound in solids. Phys. Rev. B 37, 1492–1498 (1988)CrossRefGoogle Scholar
  43. 43.
    Tarkenton, G.M., Cramer, M.S.: Nonlinear second sound in solids. Phys. Rev. B 49, 794–798 (1994)CrossRefGoogle Scholar
  44. 44.
    Jou, D., Casas-Vázquez, J.: Nonequilibrium absolute temperature, thermal waves and phonon hydrodynamics. Physica A 163, 47–58 (1990)CrossRefGoogle Scholar
  45. 45.
    Luzzi, R., Vasconcellos, A.R., Casas-Vázquez, J., Jou, D.: Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics. Physica A 234, 699–714 (1997)CrossRefGoogle Scholar
  46. 46.
    Casas-Vázquez, J., Jou, D.: Temperature in nonequilibrium states: a review of open problems and current proposals. Rep. Progr. Phys. 66, 1937–2023 (2003)CrossRefGoogle Scholar
  47. 47.
    Jou, D., Restuccia, L.: Caloric and entropic temperatures in non-equilibrium steady states. Physica A 460, 246–253 (2016)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167–178 (1963)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Coleman, B.D., Fabrizio, M., Owen, D.R.: On the thermodynamics of second sound in dielectric crystals. Arch. Rational Mech. Anal. 80, 135–158 (1982)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Racke, R., Wang, Y.-G.: Propagation of singularities in one-dimensional thermoelasticity. J. Math. Anal. Appl. 223, 216–247 (1998)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Jeffrey, A., Taniuti, T.: Nonlinear Wave Propagation. Academic, New York (1964)zbMATHGoogle Scholar
  53. 53.
    Qiu, B., Ruan, X.: Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 100, 193101 (2012)CrossRefGoogle Scholar
  54. 54.
    Shao, T., Wen, B., Melnik, R., Yao, S., Kawazoe, Y., Tian, Y.: Temperature dependent elastic constants and ultimate strength of graphene and graphene. J. Chem. Phys. 137, 194901 (2012)CrossRefGoogle Scholar
  55. 55.
    Memarian, F., Fereidoon, A., Darvish Ganji, M.: Graphene Young’s modulus: molecular mechanics and DFT treatments. Superlattices Microstruct. 85, 348–356 (2015)CrossRefGoogle Scholar
  56. 56.
    Liu, X., Metcalf, T.H., Robinson, J.T., Houston, B.H., Scarpa, F.: Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Lett. 12, 1013–1017 (2012)CrossRefGoogle Scholar
  57. 57.
    Yoon, D., Son, Y.-W., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11, 3227–3231 (2011)CrossRefGoogle Scholar
  58. 58.
    Dong, Y., Cao, B.-Y., Guo, Z.-Y.: Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics. J. Appl. Phys. 110, 063504 (2011)CrossRefGoogle Scholar
  59. 59.
    Wang, M., Yang, N., Guo, Z.-Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110, 064310 (2011)CrossRefGoogle Scholar
  60. 60.
    Dong, Y., Cao, B.-Y., Guo, Z.-Y.: General expression for entropy production in transport processes based on the thermomass model. Phys. Rev. E 85, 061107 (2012)CrossRefGoogle Scholar
  61. 61.
    Sellitto, A., Cimmelli, V.A.: Flux Limiters in radial heat transport in silicon nanolyers. J. Heat Trans. - T. ASME. 136, 071301 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly
  2. 2.Department of Mathematics, Computer Science and EconomicsUniversity of BasilicataPotenzaItaly

Personalised recommendations