Advertisement

Acta Mechanica

, Volume 230, Issue 5, pp 1487–1512 | Cite as

Stochastic time domain spectral element analysis of beam structures

  • Shuvajit MukherjeeEmail author
  • S. Gopalakrishnan
  • Ranjan Ganguli
Original Paper

Abstract

In this work, a stochastic time domain spectral element method (STSEM) is proposed for stochastic modeling and uncertainty quantification of engineering structures. To perform the analysis, both an isotropic Timoshenko beam (TB) and a sandwich beam are considered. The sandwich beam is modeled considering higher-order sandwich panel theory which is capable of addressing the core flexibility. The material properties are considered as 1D non-Gaussian random fields, and optimal linear estimation (OLE) is used for the discretization of the random fields. The OLE-based discretization of a random field allows simulating the random fields numerically, resulting in realizations of the stiffness, mass matrix, and dynamic stiffness matrix. In the current work, the computationally efficient time domain spectral element method (TSEM) is used to develop the STSEM formulation. The STSEM reduces the CPU time significantly as the number of degrees of freedom (dof) is much smaller than in FEM. TSEM also provides a consistent diagonal mass matrix which reduces the computation cost in case of dynamic problems. The deflection statistics of the beam for static, free vibration and dynamic cases are investigated for both TB and sandwich beam. The computational efficiency of the proposed method and the effect of material variability on the response statistics are also discussed. Moreover, the effect of different correlation lengths on the response statistics is studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, NY (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Rodrigues, J., Roque, C., Ferreira, A., Carrera, E., Cinefra, M.: Radial basis functions-finite differences collocation and a unified formulation for bending, vibration and buckling analysis of laminated plates, according to murakamis zig-zag theory. Compos. Struct. 93(7), 1613–1620 (2011)CrossRefGoogle Scholar
  3. 3.
    Moleiro, F., Soares, C.M., Soares, C.M., Reddy, J.: A layerwise mixed least-squares finite element model for static analysis of multilayered composite plates. Comput. Struct. 89(19–20), 1730–1742 (2011)CrossRefGoogle Scholar
  4. 4.
    Lindström, A., Hallström, S.: Energy absorption of SMC/balsa sandwich panels with geometrical triggering features. Compos. Struct. 92(11), 2676–2684 (2010)CrossRefGoogle Scholar
  5. 5.
    Dean, J., S-Fallah, A., Brown, P., Louca, L., Clyne, T.: Energy absorption during projectile perforation of lightweight sandwich panels with metallic fibre cores. Compos. Struct. 93(3), 1089–1095 (2011)CrossRefGoogle Scholar
  6. 6.
    Frostig, Y., Baruch, M., Vilnay, O., Sheinman, I.: High-order theory for sandwich-beam behavior with transversely flexible core. J. Eng. Mech. 118(5), 1026–1043 (1992)CrossRefGoogle Scholar
  7. 7.
    Nemat-Nasser, S., Kang, W., McGee, J., Guo, W.G., Isaacs, J.: Experimental investigation of energy-absorption characteristics of components of sandwich structures. Int. J. Impact Eng. 34(6), 1119–1146 (2007)CrossRefGoogle Scholar
  8. 8.
    Phan, C.N., Frostig, Y., Kardomateas, G.A.: Analysis of sandwich beams with a compliant core and with in-plane rigidity extended high-order sandwich panel theory versus elasticity. J. Appl. Mech. 79(4), 041,001 (2012)CrossRefGoogle Scholar
  9. 9.
    Phan, C.N., Bailey, N.W., Kardomateas, G.A., Battley, M.A.: Wrinkling of sandwich wide panels/beams based on the extended high-order sandwich panel theory: formulation, comparison with elasticity and experiments. Arch. Appl. Mech. 82(10–11), 1585–1599 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Phan, C.N., Kardomateas, G.A., Frostig, Y.: Blast response of a sandwich beam/wide plate based on the extended high-order sandwich panel theory and comparison with elasticity. J. Appl. Mech. 80(6), 061,005 (2013)CrossRefGoogle Scholar
  11. 11.
    Oskooei, S., Hansen, J.: Higher-order finite element for sandwich plates. AIAA J. 38(3), 525–533 (2000)CrossRefGoogle Scholar
  12. 12.
    Raja Sekhar, B., Gopalakrishnan, S., Murthy, M.: Wave transmission characteristics for higher-order sandwich panel with flexible core using time-domain spectral element method. J. Sandw. Struct. Mater. 19(3), 364–393 (2017)CrossRefGoogle Scholar
  13. 13.
    Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sprague, M., Geers, T.: Legendre spectral finite elements for structural dynamics analysis. Commun. Numer. Methods Eng. 24(12), 1953–1965 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kudela, P., Krawczuk, M., Ostachowicz, W.: Wave propagation modelling in 1d structures using spectral finite elements. J. Sound Vib. 300(1), 88–100 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)CrossRefzbMATHGoogle Scholar
  17. 17.
    Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)CrossRefGoogle Scholar
  18. 18.
    Zak, A., Krawczuk, M., Ostachowicz, W.: Propagation of in-plane waves in an isotropic panel with a crack. Finite Elem. Anal. Des. 42(11), 929–941 (2006)CrossRefGoogle Scholar
  19. 19.
    Zrahia, U., Bar-Yoseph, P.: Plate spectral elements based upon Reissner–Mindlin theory. Int. J. Numer. Methods Eng. 38(8), 1341–1360 (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kudela, P., Żak, A., Krawczuk, M., Ostachowicz, W.: Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 302(4–5), 728–745 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Li, F., Peng, H., Sun, X., Wang, J., Meng, G.: Wave propagation analysis in composite laminates containing a delamination using a three-dimensional spectral element method. Math. Probl. Eng. 2012, 1–19 (2012).  https://doi.org/10.1155/2012/659849 MathSciNetzbMATHGoogle Scholar
  22. 22.
    Vanmarcke, E., Shinozuka, M., Nakagiri, S., Schueller, G., Grigoriu, M.: Random fields and stochastic finite elements. Struct. Saf. 3(3–4), 143–166 (1986)CrossRefGoogle Scholar
  23. 23.
    Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, New York (1992)zbMATHGoogle Scholar
  24. 24.
    Haldar, A., Mahadevan, S.: Reliability Assessment Using Stochastic Finite Element Analysis. Wiley, Chichester (2000)Google Scholar
  25. 25.
    Ibrahim, R.A.: Structural dynamics with parameter uncertainties. Appl. Mech. Rev. 40(3), 309–328 (1987)CrossRefGoogle Scholar
  26. 26.
    Manohar, C., Ibrahim, R.: Progress in structural dynamics with stochastic parameter variations: 1987–1998. Appl. Mech. Rev. 52(5), 177–197 (1999)CrossRefGoogle Scholar
  27. 27.
    Sudret, B., Der Kiureghian, A.: Comparison of finite element reliability methods. Probab. Eng. Mech. 17(4), 337–348 (2002)CrossRefGoogle Scholar
  28. 28.
    Stefanou, G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198(9), 1031–1051 (2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    Manohar, C., Adhikari, S.: Dynamic stiffness of randomly parametered beams. Probab. Eng. Mech. 13(1), 39–51 (1998)CrossRefGoogle Scholar
  30. 30.
    Sarkar, A., Ghanem, R.: A substructure approach for the midfrequency vibration of stochastic systems. J. Acoust. Soc. Am. 113(4), 1922–1934 (2003)CrossRefGoogle Scholar
  31. 31.
    Gupta, S., Manohar, C.: Dynamic stiffness method for circular stochastic Timoshenko beams: response variability and reliability analyses. J. Sound Vib. 253(5), 1051–1085 (2002)CrossRefGoogle Scholar
  32. 32.
    Ostoja-Starzewski, M., Woods, A.: Spectral finite elements for vibrating rods and beams with random field properties. J. Sound Vib. 268(4), 779–797 (2003)CrossRefGoogle Scholar
  33. 33.
    Doyle, J.F.: Wave Propagation in Structures. Springer, New York (1997)CrossRefzbMATHGoogle Scholar
  34. 34.
    Adhikari, S.: Doubly spectral stochastic finite-element method for linear structural dynamics. J. Aerosp. Eng. 24(3), 264–276 (2011)CrossRefGoogle Scholar
  35. 35.
    Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Courier Corporation, North Chelmsford (2003)zbMATHGoogle Scholar
  36. 36.
    Falsone, G., Impollonia, N.: A new approach for the stochastic analysis of finite element modelled structures with uncertain parameters. Comput. Methods Appl. Mech. Eng. 191(44), 5067–5085 (2002)CrossRefzbMATHGoogle Scholar
  37. 37.
    Stefanou, G., Papadrakakis, M.: Stochastic finite element analysis of shells with combined random material and geometric properties. Comput. Methods Appl. Mech. Eng. 193(1), 139–160 (2004)CrossRefzbMATHGoogle Scholar
  38. 38.
    Noh, H.C.: A formulation for stochastic finite element analysis of plate structures with uncertain poisson’s ratio. Comput. Methods Appl. Mech. Eng. 193(45), 4857–4873 (2004)CrossRefzbMATHGoogle Scholar
  39. 39.
    Chen, N.Z., Soares, C.G.: Spectral stochastic finite element analysis for laminated composite plates. Comput. Methods Appl. Mech. Eng. 197(51), 4830–4839 (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Sasikumar, P., Suresh, R., Gupta, S.: Stochastic finite element analysis of layered composite beams with spatially varying non-Gaussian inhomogeneities. Acta Mechanica 225(6), 1503–1522 (2014)CrossRefzbMATHGoogle Scholar
  41. 41.
    Sasikumar, P., Suresh, R., Gupta, S.: Analysis of CFRP laminated plates with spatially varying non-Gaussian inhomogeneities using SFEM. Compos. Struct. 112, 308–326 (2014)CrossRefGoogle Scholar
  42. 42.
    Ngah, M., Young, A.: Application of the spectral stochastic finite element method for performance prediction of composite structures. Compos. Struct. 78(3), 447–456 (2007)CrossRefGoogle Scholar
  43. 43.
    Pandit, M.K., Singh, B.N., Sheikh, A.H.: Stochastic free vibration response of soft core sandwich plates using an improved higher-order zigzag theory. J. Aerosp. Eng. 23(1), 14–23 (2009)CrossRefGoogle Scholar
  44. 44.
    Druesne, F., Hamdaoui, M., Lardeur, P.: Variability of dynamic responses of frequency dependent visco-elastic sandwich beams with material and physical properties modeled by spatial random fields. Compos. Struct. 152, 316–323 (2016)CrossRefGoogle Scholar
  45. 45.
    Grover, N., Sahoo, R., Singh, B.N., Maiti, D.: Influence of parametric uncertainties on the deflection statistics of general laminated composite and sandwich plates. Compos. Struct. 171, 158–169 (2017)CrossRefGoogle Scholar
  46. 46.
    Li, C.C., Der Kiureghian, A.: Optimal discretization of random fields. J. Eng. Mech. 119(6), 1136–1154 (1993)CrossRefGoogle Scholar
  47. 47.
    Ostachowicz, W., Kudela, P., Krawczuk, M., Zak, A.: Guided Waves in Structures for SHM: The Time-Domain Spectral Element Method. Wiley, Singapore (2012)CrossRefzbMATHGoogle Scholar
  48. 48.
    Pozrikidis, C.: Introduction to Finite and Spectral Element Methods Using MATLAB. CRC Press, San Diego (2005)zbMATHGoogle Scholar
  49. 49.
    Adhikari, S., Manohar, C.: Transient dynamics of stochastically parametered beams. J. Eng. Mech. 126(11), 1131–1140 (2000)CrossRefGoogle Scholar
  50. 50.
    Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. Tata McGraw-Hill Education, NY (2002)Google Scholar
  51. 51.
    Sprague, M.A., Purkayastha, A.: Legendre spectral finite elements for Reissner–Mindlin composite plates. Finite Elem. Anal. Des. 105, 33–43 (2015)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Lee, J., Schultz, W.: Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method. J. Sound Vib. 269(3–5), 609–621 (2004)CrossRefGoogle Scholar
  53. 53.
    Yuan, Z., Kardomateas, G.A., Frostig, Y.: Finite element formulation based on the extended high-order sandwich panel theory. AIAA J. 53(10), 3006–3015 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations