Acta Mechanica

, Volume 229, Issue 12, pp 4863–4873 | Cite as

Relation of elastic properties, yield stress and ultimate strength of polycrystalline metals to their melting and evaporation parameters with account for nano and micro structure

  • Anatoly M. Polyanskiy
  • Vladimir A. PolyanskiyEmail author
  • Alexander K. Belyaev
  • Yury A. Yakovlev
Original Paper


The paper is concerned with the main factors that determine the mechanical characteristics of materials. The values of these factors are shown to be related to the size of structural elements. These elements are the lattice atoms in the case of calculation of Young’s modulus and the crystallites of various sizes in the case of determining the yield stress and ultimate strength. The models are constructed which allow obtaining fundamental relationships that adequately determine the mechanical characteristics of solid metals. Verification of the dependences is carried out on the basis of experimental data, and the adequacy of the proposed models is proved.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Babichev, A.P., Babushkina, N.A., Bratkovsky, A.M., et al.: Physical Values. Handbook, 1st edn. Energoatomizdat, Moscow (1991). (in Russian) Google Scholar
  2. 2.
    Balàzs, N.L.: Formation of stable molecules within the statistical theory of atoms. Phys. Rev. 156, 42–47 (1967). CrossRefGoogle Scholar
  3. 3.
    Bardel, D., Perez, M., Nelias, D., Deschamps, A., Hutchinson, C., Maisonnette, D., Chaise, T., Garnier, J., Bourlier, F.: Coupled precipitation and yield strength modelling for non-isothermal treatments of a 6061 aluminium alloy. Acta Mater. 6(2), 129–140 (2014). CrossRefGoogle Scholar
  4. 4.
    Barton, M.A., Stacey, F.D.: The grujneisen parameter at high pressure: a molecular dynamical study. Phys. Earth Planet. Inter. 39(3), 167–177 (1985). CrossRefGoogle Scholar
  5. 5.
    Born, M.: Thermodynamics of crystals and melting. J. Chem. Phys. 7(8), 591–603 (1939). CrossRefGoogle Scholar
  6. 6.
    Born, M., Fürth, R.: The stability of crystal lattices. iii: an attempt to calculate the tensile strength of a cubic lattice by purely static considerations. Math. Proc. Camb. Philos. Soc. 36(4), 454–465 (1940). MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Born, M., Misra, R.D.: On the stability of crystal lattices. iv. Math. Proc. Camb. Philos. Soc. 36(4), 466–478 (1940). CrossRefzbMATHGoogle Scholar
  8. 8.
    Fermi, E.: Un metodo statistico per la determinazione di alcune prioprieti dell atomo. Endiconti Accademia Nazionale dei Lincei 6, 602–607 (1927)Google Scholar
  9. 9.
    Fragomeni, J.M., Hillberry, B.M.: A micromechanical method for predicting the precipitation hardening response of particle strengthened alloys hardened by ordered precipitates. Acta Mech. 138(3), 185–210 (1999). CrossRefzbMATHGoogle Scholar
  10. 10.
    Frenkel, J.: Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper. Zeitschrift für Physik 37(7), 572–609 (1926). CrossRefzbMATHGoogle Scholar
  11. 11.
    Frenkel, Y.I.: Introduction to the Theory of Metals, 1st edn. Gosudarstvennoe izdatelstvo tekhniko-teoreticheskoy lieratury, Moscow (1949). (in Russian) Google Scholar
  12. 12.
    Füssl, J., Lackner, R., Eberhardsteiner, J., Mang, H.A.: Failure modes and effective strength of two-phase materials determined by means of numerical limit analysis. Acta Mech. 195(1), 185–202 (2008). CrossRefzbMATHGoogle Scholar
  13. 13.
    Garber, R.I., Gindin, I.A.: Physics of the strength of crystalline materials. Sov. Phys. Uspekhi 3(1), 41 (1960)CrossRefGoogle Scholar
  14. 14.
    Grüneisen, E.: Theorie des festen zustandes einatomiger elemente. Annalen der Physik 344(12), 257–306 (1912). CrossRefzbMATHGoogle Scholar
  15. 15.
    Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sec. B 64(9), 747 (1951)CrossRefGoogle Scholar
  16. 16.
    Kim, H.S.: A composite model for mechanical properties of nanocrystalline materials. Scr. Mater. 39(8), 1057–1061 (1998). CrossRefGoogle Scholar
  17. 17.
    Kittel, C.: Introduction to Solid State Physics, 6th edn. Wiley, New York (1986)zbMATHGoogle Scholar
  18. 18.
    Kocks, U.F.: The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1(5), 1121–1143 (1970). CrossRefGoogle Scholar
  19. 19.
    Kolupaev, V.A., Yu, M.H., Altenbach, H.: Fitting of the strength hypotheses. Acta Mech. 227(6), 1533–1556 (2016). MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Kudinova, N.R., Polyanskiy, V.A., Polyanskiy, A.M., Yakovlev, Y.A.: Modeling of the plasticity of microstructured and nanostructured materials. St. Petersburg Polytech. Univ. J. Phys. Math. 1(4), 405–409 (2015). CrossRefGoogle Scholar
  21. 21.
    Kudinova, N.R., Polyanskiy, V.A., Polyanskiy, A.M., Yakovlev, Y.A.: Contribution of surface tension energy during plastic deformation of nanomaterials. Dokl. Phys. 61(10), 514–516 (2016). CrossRefGoogle Scholar
  22. 22.
    Lieb, E.H., Simon, B.: The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    MacMillan, N.H.: The theoretical strength of solids. J. Mater. Sci. 7(2), 239–254 (1972). CrossRefGoogle Scholar
  24. 24.
    Magnin, T., Delafosse, D.: Interfaces in stress corrosion cracking: a case study in duplex stainless steels. In: Clément, N., Douin, J. (eds.) Interfaces and Plasticity, Solid State Phenomena, vol. 59, pp. 221–250. Trans Tech Publications, Zürich (1998). CrossRefGoogle Scholar
  25. 25.
    Magomedov, M.N.: The calculation of the parameters of the Mie–Lennard–Jones potential. High Temp. 44(4), 513–529 (2006). CrossRefGoogle Scholar
  26. 26.
    Meshkov, Y.: The concept of a critical density of energy in models of fracture of solids. Uspehi Fiziki Metallov 2(1), 7–50 (1985). (in Russian) CrossRefGoogle Scholar
  27. 27.
    Mourits, F.M., Rummens, F.H.A.: A critical evaluation of Lennard–Jones and Stockmayer potential parameters and of some correlation methods. Can. J. Chem. 55(16), 3007–3020 (1977). CrossRefGoogle Scholar
  28. 28.
    Nikhare, C.P.: Experiment and predictions of strain and stress based failure limits for advanced high strength steel. Mater. Today Proc. 5(1, Part 1), 261–267 (2018). (International Conference on Processing of Materials, Minerals and Energy (July 29th–30th) 2016, Ongole, Andhra Pradesh, India) CrossRefGoogle Scholar
  29. 29.
    Orowan, E.: Fracture and strength of solids. Rep. Prog. Phys. 12(1), 185 (1949)CrossRefGoogle Scholar
  30. 30.
    Ovidko, I., Skiba, N.: Enhanced dislocation emission from grain boundaries in nanocrystalline materials. Scr. Mater. 67(1), 13–16 (2012). CrossRefGoogle Scholar
  31. 31.
    Panin, V.: Overview on mesomechanics of plastic deformation and fracture of solids. Theor. Appl. Fract. Mech. 30(1), 1–11 (1998). CrossRefGoogle Scholar
  32. 32.
    Panin, V.E., Grinyaev, Y.V., Egorushkin, V.E.: Foundations of physical mesomechanics of structurally inhomogeneous media. Mech. Solids 45(4), 501–518 (2010). CrossRefGoogle Scholar
  33. 33.
    Panin, V.E., Panin, A.V., Elsukova, T.F., Popkova, Y.F.: Fundamental role of crystal structure curvature in plasticity and strength of solids. Phys. Mesomech. 18(2), 89–99 (2015). CrossRefGoogle Scholar
  34. 34.
    Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25–28 (1953)Google Scholar
  35. 35.
    Poirier, J.P.: Introduction to the physics of the Earth’s Interior, 1st edn. Cambridge University Press, Cambridge (1991)Google Scholar
  36. 36.
    Poljanskij, A.M., Poljanskij, V.A.: Patent RU 2366921 (2009)Google Scholar
  37. 37.
    Rekhviashvili, S.S., Kishtikova, E.V.: On the temperature of melting of nanoparticles and nanocrystalline substances. Tech. Phys. Lett. 32(5), 439–441 (2006). CrossRefGoogle Scholar
  38. 38.
    Rekhviashvili, S.S., Kishtikova, E.V., Karmokova, R.Y., Karmokov, A.M.: Calculating the tolman constant. Tech. Phys. Lett. 33(1), 48–50 (2007). CrossRefGoogle Scholar
  39. 39.
    Sadovsky, V.D., Malyshev, K.A., Butakov, D.: Metal Science and Heat Treatment. Handbook, 1st edn. Metallurgiya, Moscow (1961). (in Russian) Google Scholar
  40. 40.
    Sofronis, P., Liang, Y., Aravas, N.: Hydrogen induced shear localization of the plastic flow in metals and alloys. Eur. J. Mech. A Solids 20(6), 857–872 (2001). CrossRefzbMATHGoogle Scholar
  41. 41.
    Sokolov, L.D. (ed.): Mechanical properties of rare metals, 1st edn. Metallurgiya, Moscow (1972). (in Russian) Google Scholar
  42. 42.
    Thomas, L.H.: The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 23(5), 542–548 (1927). CrossRefzbMATHGoogle Scholar
  43. 43.
    Tiley, J., Kim, S., Parthasarathy, T., Loughnane, G., Kublik, R., Salem, A.: Quantifying the effect of microstructure variability on the yield strength predictions of ni-base superalloys. Mater. Sci. Eng. A 685, 178–186 (2017). CrossRefGoogle Scholar
  44. 44.
    Tumanov, A.T.: Construction Materials, vol. 3, 1st edn. Sovetskaya Encyclopedia, Moscow (1965). (in Russian) Google Scholar
  45. 45.
    Uemori, T., Naka, T., Tada, N., Yoshimura, H., Katahira, T., Yoshida, F.: Theoretical predictions of fracture and springback for high tensile strength steel sheets under stretch bending. Procedia Eng. 207, 1594–1598 (2017). (International Conference on the Technology of Plasticity, ICTP 2017, 17–22 September 2017, Cambridge, United Kingdom) CrossRefGoogle Scholar
  46. 46.
    Wang, C., Zhong, Y., Bernad Adaikalaraj, P.F., Ji, X., Roy, A., Silberschmidt, V.V., Chen, Z.: Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J. Mater. Sci. 51(12), 6002–6018 (2016). CrossRefGoogle Scholar
  47. 47.
    Yeh, Y.K., Hwu, C.: Molecular-continuum model for the prediction of stiffness, strength and toughness of nanomaterials. Acta Mech. (2017).
  48. 48.
    Zhang, S., Guan, M., Wu, G., Gao, S., Chen, X.: An ellipsoidal yield criterion for porous metals with accurate descriptions of theoretical strength and Poisson’s ratio. Acta Mech. 228(12), 4199–4210 (2017). CrossRefGoogle Scholar
  49. 49.
    Zhou, M.M., Meschke, G.: A multiscale homogenization model for strength predictions of fully and partially frozen soils. Acta Geotech. 13(1), 175–193 (2018). CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Anatoly M. Polyanskiy
    • 1
  • Vladimir A. Polyanskiy
    • 2
    Email author
  • Alexander K. Belyaev
    • 2
  • Yury A. Yakovlev
    • 3
  1. 1.RDC Electron and Beam Technologies, Ltd.Saint PetersburgRussia
  2. 2.Peter the Great Saint-Petersburg Polytechnic UniversitySaint PetersburgRussia
  3. 3.Institute for Problems in Mechanical Engineering RASSaint PetersburgRussia

Personalised recommendations