Advertisement

Acta Mechanica

, Volume 229, Issue 10, pp 4131–4139 | Cite as

Lamb waves in functionally graded plates with transverse inhomogeneity

  • Sergey V. Kuznetsov
Original Paper
  • 36 Downloads

Abstract

Propagation of harmonic Lamb waves in plates made of functionally graded materials with transverse inhomogeneity is studied by the modified Cauchy six-dimensional formalism. For arbitrary transverse inhomogeneity, a closed-form dispersion equation is derived. Dispersion relations for materials with different kinds of inhomogeneity are obtained and compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Liu, G.R., Tani, J., Ohyoshi, T.: Lamb waves in a functionally gradient material plates and its transient response. Part 1: Theory; Part 2: calculation result. Trans. Jpn. Soc. Mech. Eng. 57A, 131–42 (1991)Google Scholar
  2. 2.
    Koizumi, M.: The concept of FGM. Ceram. Trans. Funct. Gradient Mater. 34, 3–10 (1993)Google Scholar
  3. 3.
    Liu, G.R., Tani, J.: Surface waves in functionally gradient piezoelectric plates. Trans. ASME. 116, 440–448 (1994)Google Scholar
  4. 4.
    Miyamoto, Y., Kaysser, W.A., Brain, B.H., Kawasaki, A., Ford, R.G.: Functionally Graded Materials. Academic Publishers, Kluwer (1999)CrossRefGoogle Scholar
  5. 5.
    Han, X., Liu, G.R., Lam, K.Y., Ohyoshi, T.: A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization. J. Sound Vib. 236, 307–321 (2000)CrossRefGoogle Scholar
  6. 6.
    Vlasie, V., Rousseau, M.: Guide modes in a plane elastic layer with gradually continuous acoustic properties. NDT&E Int. 37, 633–644 (2004)CrossRefGoogle Scholar
  7. 7.
    Baron, C., Naili, S.: Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization. J. Acoust. Soc. Am. 127(3), 1307–1317 (2010)CrossRefGoogle Scholar
  8. 8.
    Amor, M.B., Ghozlen, M.H.B.: Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method. Ultrasonics 4905, 1–5 (2014)Google Scholar
  9. 9.
    Nanda, N., Kapuria, S.: Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories. Compos. Struct. 132, 310–320 (2015)CrossRefGoogle Scholar
  10. 10.
    Chao, Xu, Zexing, Yu.: Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method. Adv. Mech. Eng. 9(11), 1–17 (2017)Google Scholar
  11. 11.
    Lefebvre, J.E., et al.: Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach. IEEE T Ultrason. Ferr. 48, 1332–1340 (2001)CrossRefGoogle Scholar
  12. 12.
    Qian, Z.H., Jin, F., Wang, Z.K., Kishimoto, K.: Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. Int. J. Eng. Sci. 45, 455–466 (2007)CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, S.V.: Lamb waves in anisotropic plates (Review). Acoust. Phys. 60(1), 95–103 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Djeran-Maigre, I., Kuznetsov, S.V.: Soliton-like Lamb waves in layered media. In: Vila, R.P. (ed.) Waves in Fluids and Solids, pp. 53–68. IntechOpen, Maidenhead (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations