Advertisement

Acta Mechanica

, Volume 229, Issue 10, pp 4187–4198 | Cite as

Experimental and theoretical studies on mechanical creep of 1–3 piezocomposites

  • R. Pramanik
  • A. Arockiarajan
Original Paper
  • 18 Downloads

Abstract

Piezoelectric materials like bulk PZT are often subjected to mechanical creep loads. But being brittle, these undergo premature failure. Hence, piezocomposites are used instead of bulk PZT. Piezocomposites are viscoelastic in nature owing to the presence of a ductile epoxy matrix. In this paper, mechanical creep is studied for 1–3 piezocomposites of different fiber volume fractions under various levels of compressive prestress. Experiments are performed to understand the difference in their electromechanical response. The creep strain is found to increase with the increase in matrix volume fraction and stress level. The creep polarization is observed to decrease with the decrease in fiber volume fraction and stress level. The degradation in the piezocoupling coefficient is observed to be the maximum for the piezocomposite 35% fiber volume fraction and the least for the bulk PZT. This is attributed to the time-dependent permanent re-orientation of ferroelastic domains by 90\(^\circ \) during the mechanical creep phenomenon. Finally, a viscoelastic model comprising of two parallel Kelvin–Voigt elements is proposed to capture the creep strain. The creep strain is decomposed into the ferroelastic strain and anelastic strain. Creep polarization is computed from the ferroelastic strain. The model predictions are found to be in agreement with the experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the Naval Research Board (Project No.: NRB-379/MAT-16-17).

References

  1. 1.
    Lysne, P.C., Percival, C.M.: Analysis of shock-wave-actuated ferroelectric power supplies. Ferroelectrics 10, 129–133 (1976)CrossRefGoogle Scholar
  2. 2.
    Newnham, R.E., Ruschau, G.R.: Smart electroceramics. J. Am. Ceram. Soc. 74, 463–480 (1991)CrossRefGoogle Scholar
  3. 3.
    Toyoshima, H., Kobatake, H.: Features and applications of FeRAM: special issue on ferroelectric memory technology. NEC Res. Dev. 40, 206–209 (1999)Google Scholar
  4. 4.
    Forrester, J.S., Kisi, E.H.: Ferroelastic switching in a soft lead zirconate titanate. J. Eur. Ceram. Soc. 24, 595–602 (2004)CrossRefGoogle Scholar
  5. 5.
    Kamlah, M.: Ferroelectric and ferroelastic piezoceramics-modeling of electromechanical hysteresis phenomena. Contin. Mech. Thermodyn. 13, 219–268 (2001)CrossRefGoogle Scholar
  6. 6.
    Huber, J.E.: Micromechanical modelling of ferroelectricism. Curr. Opin. Solid State Mater. Sci. 9, 100–106 (2005)CrossRefGoogle Scholar
  7. 7.
    McClintock, F.A., Argon, A.S.: Mechanical Behavior of Materials. Addison-Wesley, Reading (1966)Google Scholar
  8. 8.
    Richter, H., Misawa, E.A., Lucca, D.A., Lu, H.: Modeling nonlinear behavior in a piezoelectric actuator. Precis. Eng. 25, 128–137 (2001)CrossRefGoogle Scholar
  9. 9.
    Croft, D., Shed, G., Devasia, S.: Creep, hysteresis, and vibration compensation for piezoactuators: atomic force microscopy application. J. Dyn. Syst. Meas. Contr. 123, 35–43 (2001)CrossRefGoogle Scholar
  10. 10.
    Fett, T., Thun, G.: Determination of room-temperature tensile creep of PZT. J. Mater. Sci. Lett. 17, 1929–1931 (1998)CrossRefGoogle Scholar
  11. 11.
    Guillon, O., Thiébaud, F., Delobelle, P., Perreux, D.: Compressive creep of PZT ceramics: experiments and modelling. J. Eur. Ceram. Soc. 24, 2547–2552 (2004)CrossRefGoogle Scholar
  12. 12.
    Zhang, Z., Raj, R.: Influence of grain size on ferroelastic toughening and piezoelectric behavior of lead zirconate titanate. J. Am. Ceram. Soc. 78, 3363–3368 (1995)CrossRefGoogle Scholar
  13. 13.
    Su, Y., Weng, G.J.: A self-consistent polycrystal model for the spontaneous polarization of ferroelectric ceramics. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 462, 1763–1789 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Srivastava, N., Weng, G.J.: The influence of a compressive stress on the nonlinear response of ferroelectric crystals. Int. J. Plast. 23, 1860–1873 (2007)CrossRefGoogle Scholar
  15. 15.
    Virkar, A.V., Matsumoto, R.L.K.: Ferroelastic domain switching as a toughening mechanism in tetragonal zirconia. J. Am. Ceram. Soc. 69(10), C224–C226 (1986)CrossRefGoogle Scholar
  16. 16.
    Kisi, E.H., Kennedy, S.J., Howard, C.J.: Neutron diffraction observations of ferroelastic domain switching and tetragonal-to-monoclinic transformation in Ce-TZP. J. Am. Ceram. Soc. 80, 621–628 (1997)CrossRefGoogle Scholar
  17. 17.
    Garg, A., Goel, T.C.: Mechanical and electrical properties of PZT ceramics (Zr: Ti = 0.40: 0.60) related to Nd 3+ addition. Mater. Sci. Eng. B 60, 128–132 (1999)CrossRefGoogle Scholar
  18. 18.
    Nelson, L.J.: Smart piezoelectric fibre composites. Mater. Sci. Technol. 18, 1245–1256 (2002)CrossRefGoogle Scholar
  19. 19.
    Kim, S.J.: Normally distributed free energy model and creep behavior of ferroelectric polycrystals at room and high temperatures. Acta Mech. 223, 2091–2105 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, F., Li, H.J., Wang, T.C.: Energy principle and nonlinear electric-mechanical behavior of ferroelectric ceramics. Acta Mech. 198, 147–170 (2008)CrossRefGoogle Scholar
  21. 21.
    Liu, N., Su, Y.: A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials. Acta Mech. 227, 2671–2682 (2016)CrossRefGoogle Scholar
  22. 22.
    Xing, J., Radovic, M., Muliana, A.: A nonlinear constitutive model for describing cyclic mechanical responses of \(\text{ BaTiO }_3/\text{ Ag }\) composites. Acta Mech. 228, 2017–2032 (2017)CrossRefGoogle Scholar
  23. 23.
    Xia, X., Wang, Y., Zhong, Z., Weng, G.J.: Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proc. R. Soc. A 472, 20160468 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zheng, S.F., Tuncer, E.A., Cuitino, A.M.: Variations in predicting domain switching of ferroelectric ceramics. Acta Mech. 223, 2243–2256 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Li, W.F., Weng, G.J.: A micromechanics-based thermodynamic model for the domain switch in ferroelectric crystals. Acta Mater. 52, 2489–2496 (2004)CrossRefGoogle Scholar
  26. 26.
    Liu, N., Su, Y., Weng, G.J.: A phase-field study on the hysteresis behaviors and domain patterns of nanocrystalline ferroelectric polycrystals. J. Appl. Phys. 113, 204106 (2013)CrossRefGoogle Scholar
  27. 27.
    Weng, G.J.: The Prager medal lecture: micromechanics and some aspects of phase fields in ferroelectric crystals. Acta Mech. 225, 979–998 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhou, D., Kamlah, M.: Room-temperature creep of soft PZT under static electrical and compressive stress loading. Acta Mater. 54, 1389–1396 (2006)CrossRefGoogle Scholar
  29. 29.
    Lynch, C.S.: The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta Mater. 44, 4137–4148 (1996)CrossRefGoogle Scholar
  30. 30.
    Webber, K.G., Aulbach, E., Key, T., Marsilius, M., Granzow, T., Rödel, J.: Temperature-dependent ferroelastic switching of soft lead zirconate titanate. Acta Mater. 57, 4614–4623 (2009)CrossRefGoogle Scholar
  31. 31.
    Ji, D.W., Kim, S.J.: Temperature-dependent ferroelastic switching of ferroelectric ceramics and evolution of linear material properties. Acta Mater. 61, 1–11 (2013)CrossRefGoogle Scholar
  32. 32.
    Cao, H., Evans, A.G.: Nonlinear deformation of ferroelectric ceramics. J. Am. Ceram. Soc. 76, 890–896 (1993)CrossRefGoogle Scholar
  33. 33.
    Kim, S.J., Ji, D.W.: Temperature-dependent compressive creep of ferroelectric ceramics and evolution of remnant state variables. J. Eur. Ceram. Soc. 33, 1779–1792 (2013)CrossRefGoogle Scholar
  34. 34.
    Jayendiran, R., Arockiarajan, A.: Effect of viscoelastic and dielectric relaxing matrix on ferroelastic behaviour of 1–3 piezocomposites. AIP Adv. 5, 027103 (2015)CrossRefGoogle Scholar
  35. 35.
    Jayendiran, R., Arockiarajan, A.: Experimental and theoretical studies on ferroelastic switching of 1–3 type piezocomposites. Eur. J. Mech. A Solids 38, 48–58 (2013)CrossRefGoogle Scholar
  36. 36.
    Jayendiran, R., Arockiarajan, A.: Numerical modelling and experimental characterization of temperature-dependent viscoelastic effect on the ferroelastic behaviour of 1–3 piezocomposites. Sens. Actuators A 226, 81–97 (2015)CrossRefGoogle Scholar
  37. 37.
    Jayendiran, R., Arockiarajan, A.: Modeling and experimental characterization on temperature-dependent ferroelastic switching of 1–3 type piezocomposites. Int. J. Eng. Sci. 68, 61–74 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhao, P., Cao, Y., Li, J.: Nonlinear electromechanical coupling behavior of 1–3 piezoelectric composites. Acta Mater. 59, 5534–5543 (2011)CrossRefGoogle Scholar
  39. 39.
    Della, C.N., Shu, D.W.: A comparative study of the hydrostatic performances of 1–3 piezoelectric composites with a porous matrix. Adv. Mater. Res. 47, 503–506 (2008)CrossRefGoogle Scholar
  40. 40.
    Della, C.N., Shu, D.W.: The performance of 1–3 piezoelectric composites with a porous non-piezoelectric matrix. Acta Mater. 56, 754–761 (2008)CrossRefGoogle Scholar
  41. 41.
    Zhou, D., Kamlah, M., Munz, D.: Effects of bias electric fields on the non-linear ferroelastic behavior of soft lead zirconate titanate piezoceramics. J. Am. Ceram. Soc. 88, 867–874 (2005)CrossRefGoogle Scholar
  42. 42.
    Jarzynski, C.: Microscopic analysis of Clausius–Duhem processes. J. Stat. Phys. 96, 415–427 (1999)CrossRefGoogle Scholar
  43. 43.
    Jayendiran, R., Arockiarajan, A.: Viscoelastic modeling and experimental characterization of thermo-electromechanical response of 1–3 piezocomposites. J. Appl. Phys. 116, 214103 (2014)CrossRefGoogle Scholar
  44. 44.
    Jayendiran, R., Arockiarajan, A.: Modeling of dielectric and piezoelectric response of 1–3 type piezocomposites. J. Appl. Phys. 112, 044107 (2012)CrossRefGoogle Scholar
  45. 45.
    Subhani, S.M., Maniprakash, S., Arockiarajan, A.: Nonlinear magneto-electro-mechanical response of layered magneto-electric composites: theoretical and experimental approach. Acta Mech. 228(9), 3185–3201 (2017)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Topolov, V.Y., Bowen, C.R.: Electromechanical Properties in Composites Based on Ferroelectrics. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MechanicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations