Advertisement

Acta Mechanica

, Volume 229, Issue 10, pp 3993–4004 | Cite as

A thermo-poroelasticity theory for infiltration processing of interpenetrating phase composites

  • Z.-H. Jin
Original Paper
  • 65 Downloads

Abstract

This work describes a thermo-poroelasticity theory to investigate the effects of temperature gradients on infiltration kinetics, pore pressure distribution of the liquid phase, and liquid content variation due to preform deformation for infiltration processing of interpenetrating phase composites. Governing equations for three-dimensional infiltration processing are presented. A similarity solution is derived for one-dimensional infiltration assuming no solidification of the liquid phase. The solution indicates that besides the liquid viscosity, the infiltration front also depends on the poroelastic properties of the preform. A numerical example for a polymer–ceramic IPC shows that the temperature gradients may produce significant liquid content increment beyond the amount that can be accommodated by the initial pore volume of the preform. This liquid content increment may compensate some solidification shrinkage of the liquid phase, thereby suppressing occurrence of microdefects in the composite.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Maine Space Grant Consortium (MSGC) Research Infrastructure Program. The author would like to thank two anonymous reviewers for their helpful comments.

References

  1. 1.
    Clarke, D.R.: Interpenetrating phase composites. J. Am. Ceram. Soc. 75, 739–759 (1992)CrossRefGoogle Scholar
  2. 2.
    Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S.K., Mullejans, H., Ruhle, M., Rodel, J.: Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks. Mater. Sci. Eng. A 197, 19–30 (1995)CrossRefGoogle Scholar
  3. 3.
    Agrawal, P., Sun, C.T.: Fracture in metal–ceramic composites. Compos. Sci. Technol. 64, 1167–1178 (2004)CrossRefGoogle Scholar
  4. 4.
    Wang, F.C., Zhang, X., Wang, Y.W., Fan, Q.B., Li, G.J.: Damage evolution and distribution of interpenetrating phase composites under dynamic loading. Ceram. Int. 40, 13241–13248 (2014)CrossRefGoogle Scholar
  5. 5.
    Lee, J.H., Wang, L.F., Boyce, M.C., Thomas, E.L.: Periodic bicontinuous composites for high specific energy absorption. Nano Lett. 12, 4392–4396 (2012)CrossRefGoogle Scholar
  6. 6.
    Liu, S.B., Li, A.Q., He, S.Y., Xuan, P.: Cyclic compression behavior and energy dissipation of aluminum foam-polyurethane interpenetrating phase composites. Compos. Part A 78, 35–41 (2015)Google Scholar
  7. 7.
    Hong, C., Han, J., Zhang, X., Meng, S., Du, S.: Thermal ablation resistance of melt-infiltrated titanium diboride-(copper, nickel) composites. J. Alloys Compd. 460, 400–408 (2008)CrossRefGoogle Scholar
  8. 8.
    Jin, Z.H., Tohgo, K., Fujii, T., Shimamura, Y., Noda, N.: Periodic surface cracks in an interpenetrating phase composite under a thermal shock. Int. J. Mech. Sci. (2018).  https://doi.org/10.1016/j.ijmecsci.2017.02.021 CrossRefGoogle Scholar
  9. 9.
    Colombo, P., Zordan, F., Medvedovski, E.: Ceramic–polymer composites for ballistic protection. Adv. Appl. Ceram. 105, 78–83 (2006)CrossRefGoogle Scholar
  10. 10.
    Taboasb, J.M., Maddoxb, R.D., Krebsbach, P.H., Hollister, S.J.: Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer–ceramic scaffolds. Biomaterials 24, 181–194 (2003)CrossRefGoogle Scholar
  11. 11.
    Coldea, A., Swain, M.V., Thiel, N.: Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. 29, 419–426 (2013)CrossRefGoogle Scholar
  12. 12.
    Moon, R.J., Hoffman, M., Rodel, J., Tochino, S., Pezzoiti, G.: Evaluation of crack-tip stress fields on microstructural-scale fracture in \(\text{ Al }\)\({\text{ Al }_{2}}\text{ O }_{3}\) interpenetrating network composites. Acta Mater. 57, 570–581 (2009)CrossRefGoogle Scholar
  13. 13.
    Etter, T., Kuebler, J., Frey, T., Schulz, P., Loffler, J.F., Uggowitzer, P.J.: Strength and fracture toughness of interpenetrating graphite/aluminum composites produced by the indirect squeeze casting process. Mater. Sci. Eng. A 386, 61–67 (2004)CrossRefGoogle Scholar
  14. 14.
    Lu, Y., Yang, J., Lu, W., Liu, R., Qiao, G., Bao, C.: The mechanical properties of co-continuous Si\(_3\)N\(_4\)/Al composites manufactured by squeeze casting. Mater. Sci. Eng. A 527, 6289–6299 (2010)CrossRefGoogle Scholar
  15. 15.
    Hu, L.F., Kothalkar, A., O’Neil, M., Karaman, I., Radovic, M.: Current-activated, pressure-assisted infiltration: a novel versatile route for producing interpenetrating ceramic–metal composites. Mater. Res. Lett. 2, 124–130 (2014)CrossRefGoogle Scholar
  16. 16.
    Michaud, V.J., Sommer, J.L., Mortensen, A.: Infiltration of fibrous preforms by a pure metal: part V. influence of preform compressibility. Metall. Mater. Trans. A 30, 471–482 (1999)CrossRefGoogle Scholar
  17. 17.
    Jung, C.K., Jang, J.H., Han, K.S.: Numerical simulation of infiltration and solidification processes for squeeze cast Al composites with parametric study. Metall. Mater. Trans. A 39, 2736–2748 (2008)CrossRefGoogle Scholar
  18. 18.
    Ouahbi, T., Saouab, A., Breard, J., Ouagne, P., Chatel, S.: Modelling of hydro-mechanical coupling in infusion processes. Compos. Part A 38, 1646–1654 (2007)CrossRefGoogle Scholar
  19. 19.
    Ambrosi, D.: Infiltration through deformable porous media. Z. Angew. Math. Mech. 82, 115–124 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Larsson, R., Rouhi, M., Wysocki, M.: Free surface flow and preform deformation in composites manufacturing based on porous media theory. Eur. J. Mech. A/Solids 31, 1–12 (2012)CrossRefGoogle Scholar
  21. 21.
    McTigue, D.F.: Thermal response of fluid-saturated porous rock. J. Geophys. Res. 91, 9533–9542 (1986)CrossRefGoogle Scholar
  22. 22.
    Wang, H.F.: Theory of Linear Poroelasticity. Princeton University Press, Princeton (2000)Google Scholar
  23. 23.
    Noda, N., Hetnarski, R.B., Tanigawa, Y.: Thermal Stresses, 2nd edn. Taylor & Francis, New York (2003)Google Scholar
  24. 24.
    Michaud, V., Mortensen, A.: Infiltration processing of fibre reinforced composites: governing phenomena. Compos. Part A 32, 981–996 (2001)CrossRefGoogle Scholar
  25. 25.
    Kurashige, M.: A thermoelastic theory of fluid-filled porous materials. Int. J. Solids Struct. 25, 1039–1052 (1989)CrossRefGoogle Scholar
  26. 26.
    Pecker, C., Deresiewicz, H.: Thermal effects on wave propagation in liquid-filled porous media. Acta Mech. 16, 45–64 (1973)CrossRefGoogle Scholar
  27. 27.
    Jin, Z.H., Tohgo, K., Fujii, T., Shimamura, Y.: Double edge thermal crack problem for an interpenetrating phase composite: application of a matricity-based thermal conductivity model. Eng. Fract. Mech. 177, 167–179 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MaineOronoUSA

Personalised recommendations