Advertisement

Acta Mechanica

, Volume 229, Issue 9, pp 3901–3913 | Cite as

Effect of cooperative grain boundary sliding and migration on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials

  • M. Yu
  • X. H. Peng
  • P. H. Wen
Original Paper
  • 49 Downloads

Abstract

The theoretical model of an edge dislocation near interface collinear crack tips in nanocrystalline bi-materials with cooperative grain boundary sliding and migration is formulated. As a typical example, we focus on analyzing the effect of two disclination dipoles produced by cooperative grain boundary sliding and migration on an edge dislocation emitting from a finite interfacial crack tip in nanocrystalline bi-materials. The dislocation force and the critical stress intensity factors for an edge dislocation emitting from an interface collinear crack tip under remote plane loadings are derived by using the complex potential method. And the influences of grain size, disclination strength, migration distance, sliding distance and interface crack length on the critical stress intensity factors are discussed in detail. It can be found that the effect of cooperative grain boundary sliding and migration deformation on the dislocation emission from interface collinear crack tip lies in the crack length, the dislocation emission angle, and the strength of the cooperative deformation itself.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to deeply appreciate the support from the National Natural Science Foundation of China (Grant No. 11602308). The work was also supported by the Introducing High-level Talent Research Fund of Central South University of Forestry and Technology (104-0096).

References

  1. 1.
    Zhao, H.B., Feng, H., Liu, F., Liu, Y.W., Wen, P.H.: Effect of nanoscale twin and dislocation pileup at twin boundary on crack blunting in nanocrystalline materials. Acta Mech. 228(10), 3483–3495 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    He, T., Xiao, W., Zhang, Y., Zhu, H.: Effect of special rotational deformation on the dislocation emission from a branched crack tip in deformed nanocrystalline materials. Acta Mech. 228(3), 823–836 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Zhao, J., Liu, J., Kang, G., An, L., Zhang, X.: The competitive nucleation of misfit dislocation dipole and misfit extended dislocation dipole in nanocomposites. Acta Mech. 228(7), 2541–2554 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of nanograin boundary sliding on nanovoid growth by dislocation shear loop emission in nanocrystalline materials. Eur. J. Mech. A Solids 49, 419–429 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, Y.G., Ju, R.Y.: A theoretical model for studying the mechanical properties of bimodal nanocrystalline materials. J. Mater. Res. 30(11), 1836–1843 (2015)CrossRefGoogle Scholar
  6. 6.
    Wang, P., Yang, X.H., Tian, X.B.: Fracture behavior of precracked nanocrystalline materials with grain size gradients. J. Mater. Res. 30(5), 709–716 (2015)CrossRefGoogle Scholar
  7. 7.
    Nejadseyfi, O., Shamsborhan, M., Azimi, A., Shokuhfar, A.: The roles of crystallographic orientation, high-angle grain boundary, and indenter diameter during nano-indentation. Acta Mech. 226(11), 3823 (2015)CrossRefGoogle Scholar
  8. 8.
    Zhou, Q., Xie, J.Y., Wang, F., Huang, P., Xu, K.W., Lu, T.J.: The mechanical behavior of nanoscale metallic multilayers: A survey. Acta. Mech. Sin. 31(3), 319–337 (2015)CrossRefGoogle Scholar
  9. 9.
    Ovid’ko, I.A., Skiba, N.V.: Generation of nanoscale deformation twins at locally distorted grain boundaries in nanomaterials. Int. J. Plast. 62, 50–71 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhou, K., Wu, M.S., Nazarov, A.A.: Relaxation of a disclinated tricrystalline nanowire. Acta Mater. 56, 5828–5836 (2008)CrossRefGoogle Scholar
  11. 11.
    Laursen, A.B., Patraju, K.R., Whitaker, M.J., et al.: Nanocrystalline \(\text{ Ni }_{5}\text{ P }_{4}\): a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 8(3), 1027–1034 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhou, K., Wu, M.S.: Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method. Acta Mech. 211(3–4), 271–292 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kalidindi, A.R., Chookajorn, T., Schuh, C.A.: Nanocrystalline materials at equilibrium: a thermodynamic review. JOM 67(12), 2834–2843 (2015)CrossRefGoogle Scholar
  14. 14.
    Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 49, 1406–1412 (2012)CrossRefGoogle Scholar
  15. 15.
    Zhou, K.: Elastic field and effective moduli of periodic composites with arbitrary inhomogeneity distribution. Acta Mech. 223(2), 293–308 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ovid’ko, I.A., Sheinerman, A.G., Valiev, R.Z.: Dislocation emission from deformation-distorted grain boundaries in ultrafine-grained materials. Scr. Mater. 76, 45–48 (2014)CrossRefGoogle Scholar
  17. 17.
    Ovid’ko, I.A., Skiba, N.V.: Nanotwins induced by grain boundary deformation processes in nanomaterials. Scr. Mater. 71, 33–36 (2014)CrossRefGoogle Scholar
  18. 18.
    Bobylev, S.V., Ovid’ko, I.A.: Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater. 88, 260–270 (2015)CrossRefGoogle Scholar
  19. 19.
    Ovid’ko, I.A., Sheinerman, A.G.: Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites. J. Mater. Sci. 50(12), 4430–4439 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, L., Teng, J., Liu, P., Hirata, A., Ma, E., Zhang, Z., Han, X.: Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014)CrossRefGoogle Scholar
  21. 21.
    Zhao, Y.X., Zeng, X., Chen, C.P.: Elastic behavior of disclination dipole near nanotube with surface/interface effect. Chin. Phys. B 23(3), 030202 (2014)CrossRefGoogle Scholar
  22. 22.
    Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of special rotational deformation on dislocation emission from a semi-elliptical blunt crack tip in nanocrystalline solids. J. Mater. Res. 28(6), 798–805 (2013)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y.X., Fang, Q.H., Liu, Y.W.: A wedge disclination dipole interacting with a coated cylindrical inhomogeneity. Acta Mech. Solida Sin. 28(1), 62–73 (2015)CrossRefGoogle Scholar
  24. 24.
    Feng, H., Lam, Y.C., Zhou, K., Kumar, S.B., Wu, W.J.: Elastic–plastic behavior analysis of an arbitrarily oriented crack near an elliptical inhomogeneity with generalized Irwin correction. Eur. J. Mech. A Solids 67, 177–186 (2018)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010)CrossRefGoogle Scholar
  26. 26.
    Ovid’ko, I.A., Sheinerman, A.G.: Free surface effects on stress-driven grain boundary sliding and migration processes in nanocrystalline materials. Acta Mater. 121, 117–125 (2016)CrossRefGoogle Scholar
  27. 27.
    Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59, 5023–5031 (2011)CrossRefGoogle Scholar
  28. 28.
    Babicheva, R.I., Dmitriev, S.V., Bai, L.C., Zhang, Y., Kok, S.W., Kang, G.Z., Zhou, K.: Effect of grain boundary segregation on the deformation mechanisms and mechanical properties of nanocrystalline binary aluminum alloys. Comput. Mater. Sci. 117, 445–454 (2016)CrossRefGoogle Scholar
  29. 29.
    Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39–48 (2013)CrossRefGoogle Scholar
  30. 30.
    Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials. Int. J. Plast. 42, 50–64 (2013)CrossRefGoogle Scholar
  31. 31.
    Fang, Q.H., Zhang, L.C., Liu, Y.W.: Influence of grain boundary sliding and grain size on dislocation emission from a crack tip. Int. J. Damage Mech. 23(2), 192–202 (2014)CrossRefGoogle Scholar
  32. 32.
    Feng, H., Fang, Q.H., Liu, Y.W., Chen, C.P.: Nanoscale rotational deformation effect on dislocation emission from an elliptically blunted crack tip in nanocrystalline materials. Int. J. Solids Struct. 51, 352–358 (2014)CrossRefGoogle Scholar
  33. 33.
    Zhao, Y.X., Fang, Q.H., Liu, Y.W.: Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos. Mag. 94(7), 700–730 (2014)CrossRefGoogle Scholar
  34. 34.
    Yu, M., Fang, Q.H., Feng, H., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech. 225(7), 2005–2019 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Fang, Q.H., Liu, Y.W., Jiang, C.P., Li, B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73, 1235–1248 (2006)CrossRefGoogle Scholar
  36. 36.
    Yu, M., Fang, Q.H., Feng, H., et al.: Effect of special rotational deformation on dislocation emission from interface collinear crack tip in nanocrystalline bi-materials. Acta Mech. 227(7), 2011–2024 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Muskhelishvili, N.L.: Soma Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)Google Scholar
  38. 38.
    Zhang, T.Y., Li, J.C.M.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72, 2215–2226 (1992)CrossRefGoogle Scholar
  39. 39.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, vol. 2. Wiley, New York (1964)zbMATHGoogle Scholar
  40. 40.
    Creager, M., Paris, P.C.: Elastic field equations for blunt cracks with reference to stress corrosion cracking. Int. J. Fract. 3, 247–252 (1967)CrossRefGoogle Scholar
  41. 41.
    Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29, 73–80 (1974)CrossRefGoogle Scholar
  42. 42.
    Fang, Q.H., Zhang, L.C.: Prediction of the threshold load of dislocation emission in silicon during nanoscratching. Acta Mater. 61, 5469–5476 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Engineering RheologyCentral South University of Forestry and TechnologyChangshaChina
  2. 2.Swan College of Central South University of Forestry and TechnologyChangshaChina
  3. 3.School of Engineering and Material SciencesQueen Mary, University of LondonLondonUK

Personalised recommendations