Advertisement

Acta Mechanica

, Volume 229, Issue 8, pp 3393–3414 | Cite as

Chemo-mechanical coupling in curing and material-interphase evolution in multi-constituent materials

  • Harishanker Gajendran
  • Richard B. Hall
  • Arif Masud
  • Kumbakonam R. Rajagopal
Original Paper
  • 62 Downloads

Abstract

Chemical reactions at bimaterial interfaces during manufacturing of fiber–matrix systems result in an interphase that plays a dominant role in the response of the composite when subjected to mechanical loads. An accurate modeling of the degree of cure in the interfacial region, because of its effect on the evolving properties of the interphase material, is critical to determining the coupled chemo-mechanical interphase stresses that influence the structural integrity of the composite and its fatigue life. A mixture model for curing and interphase evolution is presented that is based on a consistent thermodynamic theory for multi-constituent materials. The mixture model is cast in a stabilized finite element method that is developed employing variational multi-scale ideas for edge-based stabilization and consistent tying of the constituents at the domain boundaries. The ensuing computational method accounts for curing and interphase chemical reactions for the evolution of the density and material modulus of the constituents that have a direct effect on the interfacial stiffness and strength. Several test cases are presented to show the range of applicability of the model and the method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Partial support for this work was provided by AFRL under Contract No. FA8650-13-C-5214 and FA8650-16-M-5047. This support is gratefully acknowledged.

References

  1. 1.
    Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7(7), 689–722 (1969)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bedford, A., Stern, M.: Toward a diffusing continuum theory of composite materials. J. Appl. Mech. 38(1), 8–14 (1971)CrossRefGoogle Scholar
  3. 3.
    D’Mello, R.J., Maiarù, M., Waas, A.M.: Effect of the curing process on the transverse tensile strength of fiber-reinforced polymer matrix lamina using micromechanics computations. Integr. Mater. Manuf. Innov. 4(1), 7 (2015)CrossRefGoogle Scholar
  4. 4.
    Gajendran, H., Hall, R.B., Masud, A.: Edge stabilization and consistent tying of constituents at Neumann boundaries in multi-constituent mixture models. Int. J. Numer. Methods Eng. 110(12), 1142–1172 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hall, R.B.: A theory of coupled anisothermal chemomechanical degradation for finitely-deforming composite materials with higher-gradient interactive forces. In: Proceedings of the XIII SEM International Congress and Exposition on Experimental & Applied Mechanics, Jun 6-9, 2016, Orlando, FL, Springer (2016)Google Scholar
  6. 6.
    Hall, R.B., Rajagopal, K.R.: Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math. Mech. Solids 17(2), 131–164 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hall, R.B., Gajendran, H., Masud, A.: Diffusion of chemically reacting fluids through nonlinear elastic solids: mixture model and stabilized methods. Math Mech Solids 1, 24 (2014)Google Scholar
  8. 8.
    Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.: Generation of heat and stress during the cure of composites. Int. J. Eng. Sci. 53, 85–111 (2012)CrossRefGoogle Scholar
  9. 9.
    Heinrich, C., Aldridge, M., Wineman, A.S., Kieffer, J., Waas, A.M., Shahwan, K.: The role of curing stresses in subsequent response, damage and failure of textile polymer composites. J. Mech. Phys. Solids 61(5), 1241–1264 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hughes, T.J., Feijóo, G.R., Mazzei, L., Quincy, J.B.: The variational multiscale method: a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166(1), 3–24 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Humphrey, J., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl. Sci. 12(03), 407–430 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kannan, K., Rajagopal, K.R.: A thermodynamical framework for chemically reacting systems. Z. Angew. Math. Phys. ZAMP 62, 331–363 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karra, S.: Diffusion of a fluid through a viscoelastic solid. arXiv preprint arXiv:1010.3488 (2010)
  14. 14.
    Karra, S., Rajagopal, K.R.: A model for the thermo-oxidative degradation of polyimides. Mech. Time-Depend. Mater. 16(3), 329–342 (2012)CrossRefGoogle Scholar
  15. 15.
    Kwack, J., Masud, A., Rajagopal, K.R.: Stabilized mixed three-field formulation for a generalized incompressible Oldroyd-B model. Int. J. Numer. Methods Fluids 83, 704–734 (2017)CrossRefGoogle Scholar
  16. 16.
    Leknitskii, S.G.: Theory of elasticity of an anisotropic elastic body. Holden-Day, San Francisco (1963)Google Scholar
  17. 17.
    Masud, A.: A 3-D model of cold drawing in engineering thermoplastics. Mech. Adv. Mater. Struct. 12(6), 457–469 (2005)CrossRefGoogle Scholar
  18. 18.
    Masud, A.: A multiplicative finite strain finite element framework for the modelling of semicrystalline polymers and polycarbonates. Int. J. Numer. Methods Eng. 47(11), 1887–1908 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Masud, A., Bergman, L.A.: Solution of the four dimensional Fokker–Planck equation: still a challenge, ICOSSAR 2005, 1911-16 (2005)Google Scholar
  20. 20.
    Masud, A., Calderer, R.: A variational multiscale method for incompressible turbulent flows: Bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200(33–36), 2577–2593 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Masud, A., Truster, T.J., Bergman, L.A.: A variational multiscale a posteriori error estimation method for mixed form of nearly incompressible elasticity. Comput. Methods Appl. Mech. Eng. 200(47–48), 3453–3481 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Masud, A., Truster, T.J.: A framework for residual-based stabilization of incompressible finite elasticity: stabilized formulations and F-bar methods for linear triangles and tetrahedra. Comput. Methods Appl. Mech. Eng. 267, 359–399 (2013)CrossRefzbMATHGoogle Scholar
  23. 23.
    Masud, A., Xia, K.: A stabilized mixed finite element method for nearly incompressible elasticity. J. Appl. Mech. 72, 711–720 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Masud, A., Zhang, A., Botsis, J.: Strength of composites with long-aligned fibers: fiber-fiber and fiber-crack interaction. Compos. B Eng. 29(5), 577–588 (1998)CrossRefGoogle Scholar
  25. 25.
    Palmese, G.R., McCullough, R.L.: Effect of epoxy-amine stoichiometry on cured resin material properties. J. Appl. Polym. Sci. 46(10), 1863–1873 (2003)CrossRefGoogle Scholar
  26. 26.
    Rajagopal, K.R., Srinivasa, A.: On the thermomechanics of materials that have multiple natural configurations Part I: viscoelasticity and classical plasticity. Zeitschrift für angewandte Mathematik und Physik ZAMP 55(5), 861–893 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Rajagopal, K.R.: Diffusion through polymeric solids undergoing large deformations. Mater. Sci. Technol. 19(9), 1175–1180 (2003)CrossRefGoogle Scholar
  28. 28.
    Rao, I., Rajagopal, K.R.: A thermodynamic framework for the study of crystallization in polymers. Zeitschrift für Angewandte Mathematik und Physik ZAMP 53(3), 365–406 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC press, Boca Raton (2004)zbMATHGoogle Scholar
  30. 30.
    Ruiz, E., Trochu, F.: Thermomechanical properties during cure of glass-polyester RTM composites: elastic and viscoelastic modeling. J. Compos. Mater. 39(10), 881–916 (2005)CrossRefGoogle Scholar
  31. 31.
    Ruiz, E., Trochu, F.: Numerical analysis of cure temperature and internal stresses in thin and thick RTM parts. Compos. Part A Appl. Sci. Manuf. 36(6), 806–26 (2005)CrossRefGoogle Scholar
  32. 32.
    Truster, T.J., Chen, P., Masud, A.: Finite strain primal interface formulation with consistently evolving stabilization. Int. J. Numer. Methods Eng. 102, 278–315 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vanlandingham, M.R., Eduljee, R.F., Gillespie Jr., J.W.: Relationships between stoichiometry, microstructure, and properties for amine-cured epoxies. J. Appl. Polym. Sci. 71(5), 699–712 (1999)CrossRefGoogle Scholar
  34. 34.
    Xia, K., Masud, A.: A stabilized finite element formulation for finite deformation elastoplasticity in geomechanics. Comput. Geotech. 36, 396–405 (2009)CrossRefGoogle Scholar
  35. 35.
    Yang, F., Pitchumani, R.: Effects of interphase formation on the modulus and stress concentration factor of fiber-reinforced thermosetting-matrix composites. Compos. Sci. Technol. 64(10), 1437–52 (2004)CrossRefGoogle Scholar
  36. 36.
    Yang, F., Pitchumani, R.: A kinetics model for interphase formation in thermosetting matrix composites. J. Appl. Polym. Sci. 89(12), 3220–36 (2003)CrossRefGoogle Scholar
  37. 37.
    Yang, F., Pitchumani, R.: Modeling of interphase formation on unsized fibers in thermosetting composites, pp. 329–38. ASME-Publications-ltd, New York (2000)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Materials and Manufacturing Directorate Air Force Research LaboratoryWPAFBDaytonUSA
  3. 3.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations