Acta Mechanica

, Volume 229, Issue 8, pp 3215–3222 | Cite as

Dislocation-based description of the sliding of a free-surface emerging grain boundary

  • Jérôme Colin
  • Joël Bonneville
  • Jean Grilhé
Original Paper


The sliding phenomenon of a high-angle tilt boundary containing a disclination dipole emerging at the free-surface of a thin film deposited on a semi-infinite substrate is studied theoretically from a static point of view in the framework of a dislocation-based description. The formation from the surface of a dislocation in the boundary is investigated, and its different equilibrium positions are determined in the stress field of the disclination dipole. It is found that the formation of the dislocation in the stress field of the disclination is only possible for an inclined dipole with respect to the normal of the free-surface. Finally, the effects of the inclination angle and strength of the grain boundary disclination dipole on the stable and metastable equilibrium positions of the dislocation are analyzed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Zehetbauer, M.J., Zhu, Y.T. (eds.): Bulk Nanostructured Materials. Wiley, Weinhein (2009)Google Scholar
  2. 2.
    Li, J., Zhang, J.Y., Liu, G., Sun, J.: New insight into the stable grain size of nanotwinned Ni in steady-state creep: effect of the ratio of effective-to-internal stress. Int. J. Plast. 85, 172–189 (2016)CrossRefGoogle Scholar
  3. 3.
    Chen, C.Q., Cui, J.Z., Duan, H.L., Feng, X.Q., He, L.H., Hu, G.K., Huang, M.J., Huo, Y.Z., Ji, B.H., Liu, B., Peng, X.H., Shi, H.J., Sun, Q.P., Wang, J.X., Wang, Y.S., Zhao, H.P., Zhao, Y.P., Zheng, Q.S., Zou, W.N.: Perspectives in mechanics of heterogeneous solids. Acta Mech. Solida Sin. 24(1), 1–26 (2011)CrossRefGoogle Scholar
  4. 4.
    Zhu, L.L., Zheng, X.J.: Influence of interfacial energy and grain boundary on the elastic modulus of nanocrystalline material. Acta Mech. 213(3), 223–234 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dohr, J., Armstrong, D.E.J., Tarleton, E., Couvant, T., Lozano-Perez, S.: The influence of surface oxides on the mechanical response of oxidized grain boundaries. Thin Solid Films 632, 17–22 (2017)CrossRefGoogle Scholar
  6. 6.
    Liu, Z., Yu, H.-H.: Stress relaxation of thin film due to coupled surface and grain boundary diffusion. Thin Solid Films 518, 577–5785 (2010)Google Scholar
  7. 7.
    Wu, B., Wei, Y.: Simulations of mechanical behavior of polycrystalline copper with nano-twins. Acta Mech. Solida Sin. 21(3), 189–197 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bobylev, S.V., Morozov, N.F., Ovid’ko, I.A.: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010)CrossRefGoogle Scholar
  9. 9.
    Sharon, J.A., Prinz, F.B., Su, P.-C., Hemker, K.J.: Stress-driven grain growth in a nanocrystalline Pt thin film. Scr. Mater. 64, 25–28 (2011)CrossRefGoogle Scholar
  10. 10.
    Dynkin, N.K., Gutkin, M.Y.: Migration of grain boundaries in free-standing nanocrystalline thin films. Scr. Mater. 66, 73–76 (2012)CrossRefGoogle Scholar
  11. 11.
    Yu, M., Fang, Q., Feng, H., Liu, Y.: Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta. Mech. 225(7), 2005–2019 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Pilling, J., Ridle, N.: Superplasticity in Crystalline Solids. The Institut of Metals, London (1989)Google Scholar
  13. 13.
    Jain, M., Christman, T.: Synthesis, processing, and deformation of bulk nanophase Fe–28Al–2Cr intermetallic. Acta Metall. Mater. 42, 1901–1911 (1994)CrossRefGoogle Scholar
  14. 14.
    Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon Press, Oxford (1995)Google Scholar
  15. 15.
    Zelin, M.G., Mukherjee, A.K.: Cooperative phenomena at grain boundaries during superplastic flow. Acta Metall. Mater. 43, 2359–2372 (1995)CrossRefGoogle Scholar
  16. 16.
    Langdon, T.G.: Grain boundary sliding as a deformation mechanism during creep. Philos. Mag. 22, 689–700 (1970)CrossRefGoogle Scholar
  17. 17.
    Dayal, P., Quadir, M.Z., Kong, C., Savvides, N., Hoffman, M.: Transition from dislocation controlled plasticity to grain boundary mediated shear in nanolayered aluminum/palladium thin films. Thin Solid Films 519, 3213–3220 (2011)CrossRefGoogle Scholar
  18. 18.
    Voyiadjis, G.Z., Deliktas, B.: Modeling of strengthening and softening in inelastic nanocrystalline materials with reference to the triple junction and grain boundaries using strain gradient plasticity. Acta Mech. 213(1–2), 3–26 (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Fedorov, A.A., Gutkin, M.Y., Ovid’ko, I.A.: Transformation of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887–898 (2003)CrossRefGoogle Scholar
  20. 20.
    Ovid’ko, I.A., Sheinerman, A.G.: Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals. Int. J. Plast. 96, 227–241 (2017)CrossRefGoogle Scholar
  21. 21.
    Bobylev, S.V., Ovid’ko, I.A.: Stress-driven migration, convergence and splitting transformations of grain boundaries in nanomaterials. Acta Mater. 124, 333–342 (2017)CrossRefGoogle Scholar
  22. 22.
    Lim, A.T., Haataja, M., Cai, W., Srolovitz, D.J.: Stress-driven migration of simple low-angle mixed grain boundaries. Acta Mater. 60, 1395–1407 (2012)CrossRefGoogle Scholar
  23. 23.
    Quek, S.S., Wu, Z., Zhang, Y.W., Srolovitz, D.J.: Polycrystal deformation in a discrete dislocation dynamics framework. Acta Mater. 75, 92–105 (2014)CrossRefGoogle Scholar
  24. 24.
    Hou, C., Li, Z., Huang, M., Ouyang, C.: Cyclic hardening behavior of polycrystals with penetrable grain boundaries: two-dimensional discrete dislocation dynamics simulation. Acta Mech. Solida Sin. 22(4), 295–306 (2009)CrossRefGoogle Scholar
  25. 25.
    Mompiou, F., Caillard, D., Legros, M.: Grain boundary shear-migration coupling I. In situ TEM straining experiments in Al polycrystals. Acta Mater. 57, 2198–2209 (2009)CrossRefGoogle Scholar
  26. 26.
    Caillard, D., Mompiou, F., Legros, M.: Grain-boundary shear-migration coupling. II. Geometrical model for general boundaries. Acta Mater. 57, 2390–2402 (2009)CrossRefGoogle Scholar
  27. 27.
    Cordier, P., Demouchy, S., Taupin, V., Barou, F., Fressengeas, C.: Disclinations provide the missing mechanism for deforming olivine-rich rocks in the mantle. Nature 507, 51–56 (2014)CrossRefGoogle Scholar
  28. 28.
    Romanov, A.E., Vladimirov, V.I.: Disclination in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocation in Solids, vol. 9, pp. 191–402. North Holland, Amsterdam (1992)Google Scholar
  29. 29.
    Müllner, P., Kusche, W.-M.: Disclinations due to grain boundary relaxation in fine-grained materials and thin films. Scr. Mater. 36, 1451–1455 (1997)CrossRefGoogle Scholar
  30. 30.
    Gutkin, M.Y., Ovid’ko, I.A., Skiba, N.V.: Transformations of grains boundaries due to disclination motion and emission of dislocation pairs. Mater. Sci. Eng. A 339, 73–80 (2003)CrossRefGoogle Scholar
  31. 31.
    Picu, R.C., Gupta, V.: Singularities at grain triple junctions in two-dimensional polycrystals with cubic and orthotropic grains. J. Appl. Mech. 63(2), 295–300 (1996)CrossRefzbMATHGoogle Scholar
  32. 32.
    Reedy, E.D.: Singular stress fields at the intersection of a grain boundary and a stress-free edge in a columnar polycrystal. J. Appl. Mech. 78(014502), 1–4 (2011)Google Scholar
  33. 33.
    Zhao, Y., Fang, Q., Liu, Y.: A wedge disclination dipole interacting with a coated cylindrical inhomogeneity. Acta Mech. Solida Sin. 28, 62–73 (2015)CrossRefGoogle Scholar
  34. 34.
    Valiev, R.Z., Langdon, T.G.: An investigation of the role of intragranular dislocation strain in the superplastic Pb-\(62\%\) Sn eutectic alloy. Acta Metall. Mater. 41(3), 949–954 (1993)CrossRefGoogle Scholar
  35. 35.
    Nazarov, A.A., Shenderova, O.A., Brenner, D.W.: On the disclination-structural unit model of grain boundaries. Mater. Sci. Eng. A 281, 148–155 (2000)CrossRefGoogle Scholar
  36. 36.
    Nazarov, A.A.: Disclinations in bulk nanostructured materials: their origin, relaxation and role in materials properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 033002 (2013)CrossRefGoogle Scholar
  37. 37.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, pp. 27–30. Pergamon Press, Oxford (1970)Google Scholar
  38. 38.
    Li, J.C.M.: Some elastic properties of an edge dislocation wall. Acta Metall. 8, 563–574 (1960)CrossRefGoogle Scholar
  39. 39.
    Li, J.C.M.: Disclination model of high angle grain boundary. Surf. Sci. 31, 12–26 (1972)CrossRefGoogle Scholar
  40. 40.
    Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn, pp. 59–95. Wiley, New York (1982)Google Scholar
  41. 41.
    Akarapu, S., Zbib, H.: Dislocation interactions with tilt walls. Int. J. Mech. Mater. Des. 4, 399–406 (2008)CrossRefGoogle Scholar
  42. 42.
    Akarapu, S., Zbib, H., Hirth, J.P.: Modeling and analysis of disconnections in tilt walls. Scr. Mater. 59, 265–267 (2008)CrossRefGoogle Scholar
  43. 43.
    Peach, M., Köhler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jérôme Colin
    • 1
  • Joël Bonneville
    • 1
  • Jean Grilhé
    • 1
  1. 1.Institut P’Université de Poitiers, ENSMAFuturoscope-Chasseneuil CedexFrance

Personalised recommendations