Advertisement

Acta Mechanica

, Volume 229, Issue 7, pp 3051–3068 | Cite as

Numerical implementation of a phase mixture model for rate-dependent inelasticity of tempered martensitic steels

  • J. EisenträgerEmail author
  • K. Naumenko
  • H. Altenbach
Original Paper
  • 86 Downloads

Abstract

Tempered martensitic steels with a high chromium content are used for power plant components at elevated temperatures under creep–fatigue conditions. In order to model the complex mechanical behavior of the alloy X20CrMoV12-1, a phase mixture model is used. This model is based on the distinction of hard and soft constituents, which are connected via an iso-strain approach. Nonlinear kinematic hardening and softening effects are taken into account by introducing a backstress and a softening variable. This paper focuses on the numerical implementation of the phase mixture model, i.e., the stress update algorithm and the consistent tangent operator. For implicit time integration of the governing equations, the backward Euler method in combination with NewtonRaphson iterations is applied. The model is implemented as user material subroutine into the commercial finite element code ABAQUS. For verification, several benchmarks considering uniaxial and multi-axial stress states are presented and analyzed. Furthermore, a thermo-mechanical fatigue test based on a typical sequence of start-ups and shutdowns of power plants is simulated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agamennone, R., Blum, W., Gupta, C., Chakravartty, J.K.: Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels. Acta Mater. 54(11), 3003–3014 (2006).  https://doi.org/10.1016/j.actamat.2006.02.038 CrossRefGoogle Scholar
  2. 2.
    Alsagabi, S., Shrestha, T., Charit, I.: High temperature tensile deformation behavior of Grade 92 steel. J. Nucl. Mater. 453(1–3), 151–157 (2014).  https://doi.org/10.1016/j.jnucmat.2014.06.033 CrossRefGoogle Scholar
  3. 3.
    Armstrong, P.J., Frederick, C.O.: A Mathematical Representation of the Multiaxial Bauschinger Effect. Technical Report, Berkeley Nuclear Laboratories (1966)Google Scholar
  4. 4.
    Barkar, T., Ågren, J.: Creep simulation of 9–12% Cr steels using the composite model with thermodynamically calculated input. Mater. Sci. Eng. A 395(1–2), 110–115 (2005).  https://doi.org/10.1016/j.msea.2004.12.004 CrossRefGoogle Scholar
  5. 5.
    Barrett, R.A., O’Donoghue, P.E., Leen, S.B.: An improved unified viscoplastic constitutive model for strain-rate sensitivity in high temperature fatigue. Int. J. Fatigue 48, 192–204 (2013).  https://doi.org/10.1016/j.ijfatigue.2012.11.001 CrossRefGoogle Scholar
  6. 6.
    Berns, H., Theisen, W.: Eisenwerkstoffe - Stahl und Gusseisen. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-79957-3 Google Scholar
  7. 7.
    Blum, W.: Mechanisms of creep deformation in steel. In: Abe, F., Kern, T.U., Viswanathan, R. (eds.) Creep-Resistant Steels, pp. 365–402. Woodhead Publishing Limited, Cambridge (2008)CrossRefGoogle Scholar
  8. 8.
    Chaboche, J.L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 5(3), 247–302 (1989).  https://doi.org/10.1016/0749-6419(89)90015-6 CrossRefzbMATHGoogle Scholar
  9. 9.
    Chaboche, J.L., Cailletaud, G.: Integration methods for complex plastic constitutive equations. Comput. Methods Appl. Mech. Eng. 133(1–2), 125–155 (1996).  https://doi.org/10.1016/0045-7825(95)00957-4 CrossRefzbMATHGoogle Scholar
  10. 10.
    Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations: part II: application of internal variable concepts to the 316 stainless steel. J. Press. Vessel Technol. 105(2), 159 (1983).  https://doi.org/10.1115/1.3264258 CrossRefGoogle Scholar
  11. 11.
    Chilukuru, H., Durst, K., Wadekar, S., Schwienheer, M., Scholz, A., Berger, C., Mayer, K.H., Blum, W.: Coarsening of precipitates and degradation of creep resistance in tempered martensite steels. Mater. Sci. Eng. A 510–511, 81–87 (2009).  https://doi.org/10.1016/j.msea.2008.04.088 CrossRefGoogle Scholar
  12. 12.
    DIN EN 10027-2:2015 (German version): Designation systems for steels. Part 2: numerical system (2015)Google Scholar
  13. 13.
    Eisenträger, J., Naumenko, K., Altenbach, H.: Calibration of a phase mixture model for hardening and softening regimes in tempered martensitic steel over wide stress and temperature ranges. J. Strain Anal. Eng. Des. (2018).  https://doi.org/10.1177/0309324718755956 Google Scholar
  14. 14.
    Eisenträger, J., Naumenko, K., Altenbach, H., Gariboldi, E.: Analysis of temperature and strain rate dependencies of softening regime for tempered martensitic steel. J. Strain Anal. Eng. Des. 52, 226–238 (2017).  https://doi.org/10.1177/0309324717699746 CrossRefGoogle Scholar
  15. 15.
    Fournier, B., Dalle, F., Sauzay, M., Longour, J., Salvi, M., Caës, C., Tournié, I., Giroux, P.F., Kim, S.H.: Comparison of various 9–12%Cr steels under fatigue and creep-fatigue loadings at high temperature. Mater. Sci. Eng. A 528(22–23), 6934–6945 (2011).  https://doi.org/10.1016/j.msea.2011.05.046 CrossRefGoogle Scholar
  16. 16.
    Fournier, B., Salvi, M., Dalle, F., de Carlan, Y., Caës, C., Sauzay, M., Pineau, A.: Lifetime prediction of 9–12% Cr martensitic steels subjected to creep-fatigue at high temperature. Int. J. Fatigue 32(6), 971–978 (2010).  https://doi.org/10.1016/j.ijfatigue.2009.10.017 CrossRefGoogle Scholar
  17. 17.
    Fournier, B., Sauzay, M., Barcelo, F., Rauch, E., Renault, A., Cozzika, T., Dupuy, L., Pineau, A.: Creep-fatigue interactions in a 9 Pct Cr-1 Pct Mo martensitic steel: part II. Microstructural evolutions. Metall. Mater. Trans. A 40(2), 330–341 (2009).  https://doi.org/10.1007/s11661-008-9687-y CrossRefGoogle Scholar
  18. 18.
    Fournier, B., Sauzay, M., Mottot, M., Brillet, H., Monnet, I., Pineau, A.: Experimentally based modelling of cyclically induced softening in a martensitic steel at high temperature. In: Shibli, I., Holdsworth, S., Merckling, G. (eds.) ECCC Creep Conference, pp. 649–661. DES Tech Publications, Lancaster (2005)Google Scholar
  19. 19.
    Fournier, B., Sauzay, M., Pineau, A.: Micromechanical model of the high temperature cyclic behavior of 9–12%Cr martensitic steels. Int. J. Plast. 27(11), 1803–1816 (2011).  https://doi.org/10.1016/j.ijplas.2011.05.007 CrossRefzbMATHGoogle Scholar
  20. 20.
    Fournier, B., Sauzay, M., Renault, A., Barcelo, F., Pineau, A.: Microstructural evolutions and cyclic softening of 9%Cr martensitic steels. J. Nucl. Mater. 386–388, 71–74 (2009).  https://doi.org/10.1016/j.jnucmat.2008.12.061 Google Scholar
  21. 21.
    Giroux, P.F., Dalle, F., Sauzay, M., Malaplate, J., Fournier, B., Gourgues-Lorenzon, A.F.: Mechanical and microstructural stability of P92 steel under uniaxial tension at high temperature. Mater. Sci. Eng. A 527(16–17), 3984–3993 (2010).  https://doi.org/10.1016/j.msea.2010.03.001 CrossRefGoogle Scholar
  22. 22.
    Götz, G.: Langzeitentwicklung der Mikrostruktur neuer 9-12% Chromstähle für den Einsatz in Kraftwerken. Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg (2004)Google Scholar
  23. 23.
    Hartmann, S., Lührs, G., Haupt, P.: An efficient stress algorithm with applications in viscoplasticity and plasticity. Int. J. Numer. Methods Eng. 40(6), 991–1013 (1997).  https://doi.org/10.1002/(SICI)1097-0207(19970330)40:6%3c991::AID-NME98%3e3.0.CO;2-H CrossRefzbMATHGoogle Scholar
  24. 24.
    Harville, D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997).  https://doi.org/10.1007/b98818 CrossRefzbMATHGoogle Scholar
  25. 25.
    Itskov, M.: Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics. Springer, Berlin (2015).  https://doi.org/10.1007/978-3-319-16342-0 CrossRefzbMATHGoogle Scholar
  26. 26.
    Kostenko, Y., Almstedt, H., Naumenko, K., Linn, S., Scholz, A.: Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, p. V05BT25A040. American Society of Mechanical Engineers (2013).  https://doi.org/10.1115/GT2013-95680
  27. 27.
    Luccioni, L.X., Pestana, J.M., Taylor, R.L.: Finite element implementation of non-linear elastoplastic constitutive laws using local and global explicit algorithms with automatic error control. Int. J. Numer. Methods Eng. 50(5), 1191–1212 (2001).  https://doi.org/10.1002/1097-0207(20010220)50:5%3c1191::AID-NME73%3e3.0.CO;2-T CrossRefzbMATHGoogle Scholar
  28. 28.
    Naumenko, K., Altenbach, H.: Modeling High Temperature Materials Behavior for Structural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models, Advanced Structured Materials, vol. 28. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-319-31629-1 CrossRefGoogle Scholar
  29. 29.
    Naumenko, K., Altenbach, H., Kutschke, A.: A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. Int. J. Damage Mech. 20(4), 578–597 (2011).  https://doi.org/10.1177/1056789510386851 CrossRefGoogle Scholar
  30. 30.
    Naumenko, K., Gariboldi, E.: A phase mixture model for anisotropic creep of forged Al–Cu–Mg–Si alloy. Mater. Sci. Eng. A 618, 368–376 (2014).  https://doi.org/10.1016/j.msea.2014.09.012 CrossRefGoogle Scholar
  31. 31.
    Naumenko, K., Kutschke, A., Kostenko, Y., Rudolf, T.: Multi-axial thermo-mechanical analysis of power plant components from 9–12%Cr steels at high temperature. Eng. Fract. Mech. 78(8), 1657–1668 (2011).  https://doi.org/10.1016/j.engfracmech.2010.12.002 CrossRefGoogle Scholar
  32. 32.
    Odqvist, F., Hult, J.: Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin (1962)CrossRefGoogle Scholar
  33. 33.
    Orlová, A., Buršík, J., Kuchřoavá, K., Sklenička, V.: Microstructural development during high temperature creep of 9% Cr steel. Mater. Sci. Eng. A 245, 39–48 (1998).  https://doi.org/10.1016/S0921-5093(97)00708-9 CrossRefGoogle Scholar
  34. 34.
    Pétry, C., Lindet, G.: Modelling creep behaviour and failure of 9Cr–0.5Mo–1.8W–VNb steel. Int. J. Press. Vessels Pip. 86(8), 486–494 (2009).  https://doi.org/10.1016/j.ijpvp.2009.03.006 CrossRefGoogle Scholar
  35. 35.
    Polcik, P.: Modellierung des Verformungsverhaltens der warmfesten 9-12% Chromstähle im Temperaturbereich von 550–650\,\(^{\circ }\)C. Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg (1998)Google Scholar
  36. 36.
    Ronda, J., Oliver, G.J.: Comparison of applicability of various thermo-viscoplastic constitutive models in modelling of welding. Comput. Methods Appl. Mech. Eng. 153(3–4), 195–221 (1998).  https://doi.org/10.1016/S0045-7825(97)00069-8 CrossRefzbMATHGoogle Scholar
  37. 37.
    Röttger, D.R.: Untersuchungen zum Wechselverformungs- und Zeitstandverhalten der Stähle X20CrMoV121 und X10CrMoVNb91. Ph.D. thesis, Universität GH Essen, Essen (1997)Google Scholar
  38. 38.
    Saad, A.A.: Cyclic plasticity and creep of power plant materials. Ph.D. thesis, University of Nottingham, Nottingham (2012). http://eprints.nottingham.ac.uk/id/eprint/12538
  39. 39.
    Shutov, A.V., Kreißig, R.: Finite strain viscoplasticity with nonlinear kinematic hardening: phenomenological modeling and time integration. Comput. Methods Appl. Mech. Eng. 197(21–24), 2015–2029 (2008).  https://doi.org/10.1016/j.cma.2007.12.017 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Silbermann, C.B., Shutov, A.V., Ihlemann, J.: Modeling the evolution of dislocation populations under non-proportional loading. Int. J. Plast. 55, 58–79 (2014).  https://doi.org/10.1016/j.ijplas.2013.09.007 CrossRefGoogle Scholar
  41. 41.
    Simo, J.C., Taylor, R.L.: Consistent tangent operators for rate-independent elastoplasticity. Comput. Methods Appl. Mech. Eng. 48(1), 101–118 (1985).  https://doi.org/10.1016/0045-7825(85)90070-2 CrossRefzbMATHGoogle Scholar
  42. 42.
    Simo, J.C., Taylor, R.L.: A return mapping algorithm for plane stress elastoplasticity. Int. J. Numer. Methods Eng. 22(3), 649–670 (1986).  https://doi.org/10.1002/nme.1620220310 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sloan, S.W.: Substepping schemes for the numerical integration of elastoplastic stress-strain relations. Int. J. Numer. Methods Eng. 24(5), 893–911 (1987).  https://doi.org/10.1002/nme.1620240505 CrossRefzbMATHGoogle Scholar
  44. 44.
    Straub, S.: Verformungsverhalten und Mikrostruktur warmfester martensitischer 12%-Chromstähle. Ph.D. thesis, Friedrich-Alexander-Universität, Erlangen-Nürnberg (1995)Google Scholar
  45. 45.
    The MathWorks, Inc.: MATLAB R2015a Documentation (2015)Google Scholar
  46. 46.
    Velay, V., Bernhart, G., Penazzi, L.: Cyclic behavior modeling of a tempered martensitic hot work tool steel. Int. J. Plast. 22(3), 459–496 (2006).  https://doi.org/10.1016/j.ijplas.2005.03.007 CrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, J., Steinmann, P., Rudolph, J., Willuweit, A.: Simulation of creep and cyclic viscoplastic strains in high-Cr steel components based on a modified Becker–Hackenberg model. Int. J. Press. Vessels Pip. 128, 36–47 (2015).  https://doi.org/10.1016/j.ijpvp.2015.02.003 CrossRefGoogle Scholar
  48. 48.
    Wang, L., Li, M., Almer, J.: In situ characterization of grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 440(1–3), 81–90 (2013).  https://doi.org/10.1016/j.jnucmat.2013.04.063 CrossRefGoogle Scholar
  49. 49.
    Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-71001-1 zbMATHGoogle Scholar
  50. 50.
    Zhang, S.L., Xuan, F.Z.: Interaction of cyclic softening and stress relaxation of 9–12% Cr steel under strain-controlled fatigue-creep condition: experimental and modeling. Int. J. Plast. (2017).  https://doi.org/10.1016/j.ijplas.2017.06.007 Google Scholar
  51. 51.
    Zhu, Y., Kang, G., Kan, Q., Bruhns, O.T.: Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity. Int. J. Plast. 54, 34–55 (2014).  https://doi.org/10.1016/j.ijplas.2013.08.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MechanicsOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations