Acta Mechanica

, Volume 229, Issue 4, pp 1453–1482 | Cite as

Films over topography: from creeping flow to linear stability, theory, and experiments, a review

Review and Perspective in Mechanics
  • 73 Downloads

Abstract

The present review deals with the effects of topography and inertia on gravity-driven film flows. The article is organized like a rope ladder, with the rungs of topography and inertia being scaled one after another. We begin with an introduction, where we specify the literature reviewed in our article and highlight the physical significance of this type of fluid motion. Next, we address the effects of different types of topographies on creeping film flow and films in lubrication approximation, and on inertial flow. Then, findings on inertial flow with sidewalls as bounding topography are reviewed. In all these cases, the impact of topography and inertia on both the free surface and the flow field structure is shown. Subsequently, we briefly highlight inverse problem theory. The following penultimate section focuses on the stability of film flows. After a short review on the stability of films over flat inclines which we give for convenience, the stability of films over topography is considered. A discussion on the stability of films with sidewalls as bounding topography follows. In each case, the interaction between topography, flow field, and free surface is shown with the theoretical and experimental methods being discussed. Finally, the paper closes with some concluding remarks and an outlook from the authors’ perspective—one century after the groundbreaking work of Wilhelm Nusselt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Gennes, P.-G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena. Springer, Berlin (2004)MATHGoogle Scholar
  2. 2.
    Braun, R.J.: Dynamics of the tear film. Annu. Rev. Fluid Mech. 44, 267–297 (2011)MathSciNetMATHGoogle Scholar
  3. 3.
    Luca, I., Hutter, K., Tai, Y.C., Kuo, C.Y.: A hierarchy of avalanche models on arbitrary topography. Acta Mech. 205, 121–149 (2009)MATHGoogle Scholar
  4. 4.
    Greve, R., Blatter, H.: Dynamics of Ice Sheets and Glaciers. Springer, Berlin (2009)Google Scholar
  5. 5.
    Kumar, A., Karig, D., Acharya, R., Neethirajan, S., Mukherjee, P.P., Retterer, S., Doktycz, M.J.: Microscale confinement features can affect biofilm formation. Microfluid. Nanofluid. 14, 895–902 (2013)Google Scholar
  6. 6.
    Webb, R.L.: Principles of Enhanced Heat Transfer. Wiley, New York (1994)Google Scholar
  7. 7.
    Kistler, S.F., Schweizer, P.M.: Liquid Film Coating. Springer, Netherlands (1997)Google Scholar
  8. 8.
    Weinstein, S.J., Ruschak, K.J.: Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004)MATHGoogle Scholar
  9. 9.
    Gugler, G., Beer, R., Mauron, M.: Operative limits of curtain coating due to edges. Chem. Eng. Process. Process Intensif. 50, 462–465 (2011)Google Scholar
  10. 10.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)Google Scholar
  11. 11.
    Chang, H.C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films. Elsevier, Amsterdam (2002)Google Scholar
  12. 12.
    Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)Google Scholar
  13. 13.
    Nusselt, W.: Die Oberflächenkondensation des Wasserdampfes. VDI Z 60, 541–546 (1916)Google Scholar
  14. 14.
    Spurk, J.-H., Aksel, N.: Fluid Mechanics, 2nd edn. Springer, Berlin (2008)MATHGoogle Scholar
  15. 15.
    Kalliadasis, S., Bielarz, C., Homsy, G.M.: Steady free-surface thin film flows over topography. Phys. Fluids 12, 1889–1898 (2000)MathSciNetMATHGoogle Scholar
  16. 16.
    Kalliadasis, S., Bielarz, C.: Erratum: steady free-surface thin film flows over topography [Phys. Fluids 12, 1889 (2000)]. Phys. Fluids 12, 3305 (2000)MathSciNetGoogle Scholar
  17. 17.
    Mazouchi, A., Homsy, G.M.: Free surface Stokes flow over topography. Phys. Fluids 13, 2751–2761 (2001)MATHGoogle Scholar
  18. 18.
    Aksel, N.: Influence of the capillarity on a creeping film flow down an inclined plane with an edge. Arch. Appl. Mech. 70, 81–90 (2000)MATHGoogle Scholar
  19. 19.
    Heining, C., Sellier, M., Aksel, N.: The inverse problem in creeping film flows. Acta Mech. 223, 841–847 (2012)MathSciNetMATHGoogle Scholar
  20. 20.
    Gaskell, P.H., Jimack, P.K., Sellier, M., Thompson, H.M., Wilson, M.C.T.: Gravity-driven flow of continuous thin liquid films on non-porous substrates with topography. J. Fluid Mech. 509, 253–280 (2004)MathSciNetMATHGoogle Scholar
  21. 21.
    Wang, C.Y.: Liquid film flowing slowly down a wavy incline. AIChE J. 27, 207–212 (1981)Google Scholar
  22. 22.
    Scholle, M., Wierschem, A., Aksel, N.: Creeping films with vortices over strongly undulated bottoms. Acta Mech. 168, 167–193 (2004)MATHGoogle Scholar
  23. 23.
    Scholle, M., Rund, A., Aksel, N.: Drag reduction and improvement of material transport in creeping films. Acta Mech. 75, 93–112 (2006)MATHGoogle Scholar
  24. 24.
    Pozrikidis, C.: The flow of a liquid film along a periodic wall. J. Fluid Mech. 188, 275–300 (1988)MATHGoogle Scholar
  25. 25.
    Wierschem, A., Scholle, M., Aksel, N.: Vortices in film flow over strongly undulated bottom profiles at low Reynolds numbers. Phys. Fluids 15, 426–435 (2003)MathSciNetMATHGoogle Scholar
  26. 26.
    Nguyen, P.K., Bontozoglou, V.: Steady solutions of inertial film flow along strongly undulated substrates. Phys. Fluids 23, 052103 (2011)Google Scholar
  27. 27.
    Moffatt, H.K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18 (1964)MATHGoogle Scholar
  28. 28.
    Pozrikidis, C., Thoroddsen, S.T.: The deformation of a liquid film flowing down an inclined plane wall over a small particle arrested on the wall. Phys. Fluids A 3, 2546–2558 (1991)MATHGoogle Scholar
  29. 29.
    Hayes, M., O’Brien, S.B.G., Lammers, J.H.: Green’s function for steady flow over a small two-dimensional topography. Phys. Fluids 12, 2845–2858 (2000)MathSciNetMATHGoogle Scholar
  30. 30.
    Blyth, M.G., Pozrikidis, C.: Film flow down an inclined plane over a three-dimensional obstacle. Phys. Fluids 18, 052104 (2006)MathSciNetMATHGoogle Scholar
  31. 31.
    Baxter, S.J., Power, H., Cliffe, K.A., Hibberd, S.: Three-dimensional thin film flow over and around an obstacle on an inclined plane. Phys. Fluids 21, 032102 (2009)MATHGoogle Scholar
  32. 32.
    Lee, Y.C., Thompson, H.M., Gaskell, P.H.: An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features. Comput. Fluids 36, 838–855 (2007)MATHGoogle Scholar
  33. 33.
    Sellier, M., Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Thin film flow on surfaces containing arbitrary occlusions. Comput. Fluids 38, 171–182 (2009)MathSciNetMATHGoogle Scholar
  34. 34.
    Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Three-dimensional thin film and droplet flows over and past surface features with complex physics. Comput. Fluids 46, 306–311 (2011)MathSciNetMATHGoogle Scholar
  35. 35.
    Lee, Y.C., Thompson, H.M., Gaskell, P.H.: Dynamics of thin film flow on flexible substrate. Chem. Eng. Process. Process Intensif. 50, 525–530 (2011)Google Scholar
  36. 36.
    Luo, H., Pozrikidis, C.: Gravity-driven film flow down an inclined wall with three-dimensional corrugations. Acta Mech. 188, 209–225 (2007)MATHGoogle Scholar
  37. 37.
    Bontozoglou, V., Serifi, K.: Falling film flow along steep two-dimensional topography: the effect of inertia. Int. J. Multiph. Flow 34, 734–747 (2008)Google Scholar
  38. 38.
    Wierschem, A., Scholle, M., Aksel, N.: Comparison of different theoretical approaches to experiments on film flow down an inclined wavy channel. Exp. Fluids 33, 429–442 (2002)Google Scholar
  39. 39.
    Wierschem, A., Aksel, N.: Influence of inertia on eddies created in films creeping over strongly undulated substrates. Phys. Fluids 16, 4566–4574 (2004)MATHGoogle Scholar
  40. 40.
    Scholle, M., Haas, A., Aksel, N., Wilson, M.C.T., Thompson, H.M., Gaskell, P.H.: Competing geometric and inertial effects on local flow structure in thick gravity-driven fluid films. Phys. Fluids 20, 123101 (2008)MATHGoogle Scholar
  41. 41.
    Bontozoglou, V., Kalliadasis, S., Karabelas, A.J.: Inviscid free-surface flow over a periodic wall. J. Fluid Mech. 226, 189–203 (1991)MATHGoogle Scholar
  42. 42.
    Bontozoglou, V., Papapolymerou, G.: Laminar film flow down a wavy incline. Int. J. Multiph. Flow 23, 69–79 (1997)MATHGoogle Scholar
  43. 43.
    Trifonov, Y.Y.: Viscous liquid film flows over a periodic surface. Int. J. Multiph. Flow 24, 1139–1161 (1998)MathSciNetMATHGoogle Scholar
  44. 44.
    Bontozoglou, V.: Laminar film flow along a periodic wall. CMES-Comp. Model Eng. 1, 133–142 (2000)MATHGoogle Scholar
  45. 45.
    Wierschem, A., Aksel, N.: Hydraulic jumps and standing waves in gravity-driven flows of viscous liquids in wavy open channels. Phys. Fluids 16, 3868–3877 (2004)MATHGoogle Scholar
  46. 46.
    Wierschem, A., Bontozoglou, V., Heining, C., Uecker, H., Aksel, N.: Linear resonance in viscous films on inclined wavy planes. Int. J. Multiph. Flow 34, 580–589 (2008)Google Scholar
  47. 47.
    Anshus, B.E., Goren, S.L.: A method of getting approximate solutions to the Orr-Sommerfeld equation for flow on a vertical wall. AICHE J. 12, 1004–1008 (1966)Google Scholar
  48. 48.
    Heining, C., Bontozoglou, V., Aksel, N., Wierschem, A.: Nonlinear resonance in viscous films on inclined wavy planes. Int. J. Multiph. Flow 35, 78–90 (2009)Google Scholar
  49. 49.
    Duffing, G.: Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz. F. Vieweg und Sohn, Braunschweig (1918)MATHGoogle Scholar
  50. 50.
    Malamataris, N.A., Bontozoglou, V.: Computer aided analysis of viscous film flow along an inclined wavy wall. J. Comput. Phys. 154, 372–392 (1999)MATHGoogle Scholar
  51. 51.
    Pak, M.I., Hu, G.H.: Numerical investigations on vortical structures of viscous film flows along periodic rectangular corrugations. Int. J. Multiph. Flow 37, 369–379 (2011)Google Scholar
  52. 52.
    Vlachogiannis, M., Bontozoglou, V.: Experiments on laminar film flow along a periodic wall. J. Fluid Mech. 457, 133–156 (2002)MATHGoogle Scholar
  53. 53.
    Argyriadi, K., Vlachogiannis, M., Bontozoglou, V.: Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys. Fluids 18, 012102 (2006)Google Scholar
  54. 54.
    Wierschem, A., Pollak, T., Heining, C., Aksel, N.: Suppression of eddies in films over topography. Phys. Fluids 22, 113603 (2010)Google Scholar
  55. 55.
    Valluri, P., Matar, O.K., Hewitt, G.F., Mendes, M.A.: Thin film flow over structured packings at moderate Reynolds numbers. Chem. Eng. Sci. 60, 1965–1975 (2005)Google Scholar
  56. 56.
    Varchanis, S., Dimakopoulos, Y., Tsamopoulos, J.: Steady film flow over a substrate with rectangular trenches forming air inclusions. Phys. Rev. Fluids 2, 124001 (2017)Google Scholar
  57. 57.
    Decré, M.M.J., Baret, J.-C.: Gravity-driven flows of viscous liquids over two-dimensional topographies. J. Fluid Mech. 487, 147–166 (2003)MATHGoogle Scholar
  58. 58.
    Veremieiev, S., Thompson, H.M., Gaskell, P.H.: Inertial thin film flow on planar surfaces featuring topography. Comput. Fluids 39, 431–450 (2010)MATHGoogle Scholar
  59. 59.
    Veremieiev, S., Thompson, H.M., Gaskell, P.H.: Free-surface film flow over topography: full three-dimensional finite element solutions. Comput. Fluids 122, 66–82 (2015)MathSciNetGoogle Scholar
  60. 60.
    Wang, C.Y.: Low Reynolds number film flow down a three-dimensional bumpy surface. J. Fluids Eng. 127, 1122–1127 (2005)Google Scholar
  61. 61.
    Luo, H., Pozrikidis, C.: Effect of inertia on film flow over oblique and three-dimensional corrugations. Phys. Fluids 18, 078107 (2006)MATHGoogle Scholar
  62. 62.
    Luo, H., Pozrikidis, C.: Publisher’s note: effect of inertia on film flow over oblique and three-dimensional corrugations [Phys. Fluids 18, 078107 (2006)]. Phys. Fluids 18, 129901 (2006)MATHGoogle Scholar
  63. 63.
    Heining, C., Pollak, T., Aksel, N.: Pattern formation and mixing in three-dimensional film flow. Phys. Fluids 24, 042102 (2012)Google Scholar
  64. 64.
    Scholle, M., Aksel, N.: An exact solution of visco-capillary flow in an inclined channel. Zeitschrift für Angewandte Mathematik und Physik ZAMP 52, 749–769 (2001)MathSciNetMATHGoogle Scholar
  65. 65.
    Scholle, M., Aksel, N.: Thin film limit and film rupture of the visco-capillary gravity-driven channel flow. Zeitschrift für Angewandte Mathematik und Physik ZAMP 54, 517–531 (2003)MathSciNetMATHGoogle Scholar
  66. 66.
    Haas, A., Pollak, T., Aksel, N.: Side wall effects in thin gravity-driven film flow: steady and draining flow. Phys. Fluids 23, 062107 (2011)Google Scholar
  67. 67.
    Sellier, M.: Inverse problems in free surface flows: a review. Acta Mech. 227, 913–935 (2016)MathSciNetMATHGoogle Scholar
  68. 68.
    Sellier, M.: Substrate design or reconstruction from free surface data for thin film flows. Phys. Fluids 20, 062106 (2008)MATHGoogle Scholar
  69. 69.
    Heining, C., Aksel, N.: Bottom reconstruction in thin-film flow over topography: steady solution and linear stability. Phys. Fluids 21, 083605 (2009)MATHGoogle Scholar
  70. 70.
    Heining, C.: Velocity field reconstruction in gravity-driven flow over unknown topography. Phys. Fluids 23, 032101 (2011)Google Scholar
  71. 71.
    Heining, C., Pollak, T., Sellier, M.: Flow domain identification from free surface velocity in thin inertial films. J. Fluid Mech. 720, 338–356 (2013)MathSciNetMATHGoogle Scholar
  72. 72.
    Anjalaiah, Y., Chakraborty, S., Usha, R.: Steady solution of an inverse problem in gravity-driven shear-thinning film flow: reconstruction of an uneven bottom substrate. J. Non-Newton Fluid Mech. 219, 65–77 (2015)MathSciNetGoogle Scholar
  73. 73.
    Usha, R.: Anjalaiah: Steady solution and spatial stability of gravity-driven thin-film flow: reconstruction of an uneven slippery bottom substrate. Acta Mech. 227, 1685–1709 (2016)MathSciNetMATHGoogle Scholar
  74. 74.
    Heining, C., Sellier, M.: Flow domain identification in three-dimensional creeping flows. Phys. Fluids. 29, 012107 (2017)Google Scholar
  75. 75.
    Schörner, M., Reck, D., Aksel, N.: Does the topography’s specific shape matter in general for the stability of film flows? Phys. Fluids 27, 042103 (2015)Google Scholar
  76. 76.
    Kapitza, P.L.: Wavy flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 18, 3–28 (1948)Google Scholar
  77. 77.
    Kapitza, P.L., Kapitza, S.P.: Wavy flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 19, 105–120 (1949)MATHGoogle Scholar
  78. 78.
    Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574 (1957)MathSciNetMATHGoogle Scholar
  79. 79.
    Yih, C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321–334 (1963)MATHGoogle Scholar
  80. 80.
    Orr, W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 9–68 (1907)Google Scholar
  81. 81.
    Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: a viscous liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 69–138 (1907)Google Scholar
  82. 82.
    Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In: Proceedings of the 4th International Congress of Mathematicians, vol. 3, pp. 116-124 (1908)Google Scholar
  83. 83.
    Lin, S.P.: Finite-amplitude stability of a parallel flow with a free surface. J. Fluid Mech. 36, 113–126 (1969)MATHGoogle Scholar
  84. 84.
    Gjevik, B.: Occurrence of finite-amplitude surface waves on falling liquid films. Phys. Fluids 13, 1918–1925 (1970)MATHGoogle Scholar
  85. 85.
    Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150 (1966)MathSciNetMATHGoogle Scholar
  86. 86.
    Liu, J., Paul, J.D., Gollub, J.P.: Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69–101 (1993)Google Scholar
  87. 87.
    Liu, J., Gollub, J.P.: Solitary wave dynamics of film flows. Phys. Fluids 6, 1702–1712 (1994)Google Scholar
  88. 88.
    Liu, J., Gollub, J.P.: Onset of spatially chaotic waves on flowing films. Phys. Rev. Lett. 70, 2289–2292 (1993)Google Scholar
  89. 89.
    Liu, J., Schneider, J.B., Gollub, J.P.: Three-dimensional instabilities of film flows. Phys. Fluids 7, 55–67 (1995)MathSciNetGoogle Scholar
  90. 90.
    Trifonov, Y.Y.: Stability of the wavy film falling down a vertical plate: the DNS computations and Floquet theory. Int. J. Multiph. Flow 61, 73–82 (2014)MathSciNetGoogle Scholar
  91. 91.
    Kalliadasis, S., Homsy, G.M.: Stability of free-surface thin-film flows over topography. J. Fluid Mech. 448, 387–410 (2001)MathSciNetMATHGoogle Scholar
  92. 92.
    Bielarz, C., Kalliadasis, S.: Time-dependent free-surface thin film flows over topography. Phys. Fluids 15, 2512–2524 (2003)MathSciNetMATHGoogle Scholar
  93. 93.
    Dávalos-Orozco, L.A.: Instabilities of thin films flowing down flat and smoothly deformed walls. Microgravity Sci. Technol. 20, 225–229 (2008)Google Scholar
  94. 94.
    Dávalos-Orozco, L.A.: Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19, 074103 (2007)MATHGoogle Scholar
  95. 95.
    Wierschem, A., Aksel, N.: Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221–237 (2003)MathSciNetMATHGoogle Scholar
  96. 96.
    Wierschem, A., Lepski, C., Aksel, N.: Effect of long undulated bottoms on thin gravity-driven films. Acta Mech. 179, 41–66 (2005)MATHGoogle Scholar
  97. 97.
    Trifonov, Y.Y.: Stability and nonlinear wavy regimes in downward film flows on a corrugated surface. J. App. Mech. Tech. Phys. 48, 91–100 (2007)MATHGoogle Scholar
  98. 98.
    Trifonov, Y.Y.: Stability of a viscous liquid film flowing down a periodic surface. Int. J. Multiph. Flow 33, 1186–1204 (2007)Google Scholar
  99. 99.
    Heining, C., Aksel, N.: Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline. Int. J. Multiph. Flow 36, 847–857 (2010)Google Scholar
  100. 100.
    D’Alessio, S.J.D., Pascal, J.P., Jasmine, H.A.: Instability in gravity-driven flow over uneven surfaces. Phys. Fluids 21, 062105 (2009)MATHGoogle Scholar
  101. 101.
    Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations, 2nd edn. Oxford University Press, Oxford (1987)MATHGoogle Scholar
  102. 102.
    Ruyer-Quil, C., Manneville, P.: Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357 (2000)MATHGoogle Scholar
  103. 103.
    Balmforth, N.J., Mandre, S.: Dynamics of roll waves. J. Fluid Mech. 514, 1–33 (2004)MathSciNetMATHGoogle Scholar
  104. 104.
    Kármán, Th. v.: Über laminare und turbulente Reibung. ZAMM 1, 233-252 (1921)Google Scholar
  105. 105.
    Pohlhausen, K.: Zur näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht. ZAMM 1, 252–268 (1921)MATHGoogle Scholar
  106. 106.
    Pollak, T., Aksel, N.: Crucial flow stabilization and multiple instability branches of gravity-driven films over topography. Phys. Fluids 25, 024103 (2013)Google Scholar
  107. 107.
    Trifonov, Y.Y.: Stability of a film flowing down an inclined corrugated plate: the direct Navier–Stokes computations and Floquet theory. Phys. Fluids 26, 114101 (2014)Google Scholar
  108. 108.
    Cao, Z., Vlachogiannis, M., Bontozoglou, V.: Experimental evidence for a short-wave global mode in film flow along periodic corrugations. J. Fluid Mech. 718, 304–320 (2013)MATHGoogle Scholar
  109. 109.
    Schörner, M., Reck, D., Aksel, N.: Stability phenomena far beyond the Nusselt flow: revealed by experimental asymptotics. Phys. Fluids 28, 022102 (2016)Google Scholar
  110. 110.
    Trifonov, Y.Y.: Viscous liquid film flow down an inclined corrugated surface. Calculation of the flow stability to arbitrary perturbations using an integral method. J. Appl. Mech. Tech. Phys. 57, 195–201 (2016)MathSciNetGoogle Scholar
  111. 111.
    Trifonov, Y.Y.: Nonlinear waves on a liquid film falling down an inclined corrugated surface. Phys. Fluids 29, 054104 (2017)Google Scholar
  112. 112.
    Schörner, M., Reck, D., Aksel, N., Trifonov, Y.Y.: Switching between different types of stability isles in films over topographies. Acta Mech. 229, 423–436 (2018)MathSciNetGoogle Scholar
  113. 113.
    Schörner, M., Aksel, N.: The stability cycle: a universal pathway for the stability of films over topography. Phys. Fluids 30, 012105 (2018)Google Scholar
  114. 114.
    Dauth, M., Schörner, M., Aksel, N.: What makes the free surface waves over topographies convex or concave? Phys. Fluids 29, 092108 (2017)Google Scholar
  115. 115.
    Reck, D., Aksel, N.: Experimental study on the evolution of traveling waves over an undulated incline. Phys. Fluids 25, 102101 (2013)Google Scholar
  116. 116.
    Vlachogiannis, M., Samandas, A., Leontidis, V., Bontozoglou, V.: Effect of channel width on the primary instability of inclined film flow. Phys. Fluids 22, 012106 (2010)MATHGoogle Scholar
  117. 117.
    Leontidis, V., Vatteville, J., Vlachogiannis, M., Andritsos, N., Bontozoglou, V.: Nominally two-dimensional waves in inclined film flow in channels of finite width. Phys. Fluids 22, 112106 (2010)Google Scholar
  118. 118.
    Georgantaki, A., Vatteville, J., Vlachogiannis, M., Bontozoglou, V.: Measurements of liquid film flow as a function of fluid properties and channel width: evidence for surface-tension-induced long-range transverse coherence. Phys. Rev. E 84, 026325 (2011)Google Scholar
  119. 119.
    Pollak, T., Haas, A., Aksel, N.: Side wall effects on the instability of thin gravity-driven films: from long-wave to short-wave instability. Phys. Fluids 23, 094110 (2011)Google Scholar
  120. 120.
    Guzanov, V.V., Bobylev, A.V., Heinz, O.M., Kvon, A.Z., Markovich, D.M.: Characterization of 3-D wave flow regimes on falling liquid films. Int. J. Multiph. Flow 99, 474–484 (2018)Google Scholar
  121. 121.
    Thompson, A.B., Gomes, S.N., Pavoliotis, G.A., Papageorgiou, D.T.: Stabilising falling liquid film flows using feedback control. Phys. Fluids 28, 012107 (2016)Google Scholar
  122. 122.
    Gomes, S.N., Kalliadasis, S., Papageorgiou, D.T., Pavoliotis, G.A.: Controlling roughening processes in the stochastic Kuramoto–Sivashinsky equation. Physica D 348, 33–43 (2017)MathSciNetMATHGoogle Scholar
  123. 123.
    Usha, R.: Effects of velocity slip on the inertialess instability of a contaminated two-layer film flow. Acta Mech. 226, 3111–3132 (2015)MathSciNetMATHGoogle Scholar
  124. 124.
    Ghosh, S., Usha, R.: Stability of viscosity stratified flows down an incline: role of miscibility and wall slip. Phys. Fluids 28, 104101 (2016)Google Scholar
  125. 125.
    Tseluiko, D., Blyth, M.G., Papageorgiou, D.T.: Stability of film flow over inclined topography based on a long-wave nonlinear model. J. Fluid Mech. 729, 638–671 (2013)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mechanics and Fluid DynamicsUniversity of BayreuthBayreuthGermany

Personalised recommendations