Advertisement

Acta Mechanica

, Volume 229, Issue 7, pp 2787–2800 | Cite as

Transversely isotropic thermal properties of carbon nanotubes containing vacancies

  • R. Kothari
  • S. I. KundalwalEmail author
  • S. K. Sahu
Original Paper

Abstract

In this work, the transversely isotropic thermal properties of carbon nanotubes (CNTs) containing vacancies were determined using molecular dynamics simulations with adaptive intermolecular reactive empirical bond-order force fields. The effects of vacancy concentrations, their position, and the diameter of armchair CNTs were taken into consideration. The current results reveal that vacancies affect (i) the axial coefficient of thermal expansion of the larger diameter CNTs and (ii) the thermal conductivities of the smaller diameter CNTs due to the phonon scattering from defect sides leading to a severe degradation in their thermal conductivity. The results also reveal that the position of vacancies along the length of CNTs is the main influencing factor which governs the change in the thermal properties of CNTs, especially for vacancy concentration of 1%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kothari, R., Kundalwal, S.I., Sahu, S.K., Ray, M.C.: Modeling of thermomechanical properties of polymeric hybrid nanocomposites. Polym. Compos. (2017).  https://doi.org/10.1002/pc.24483 Google Scholar
  2. 2.
    Islam, M.Z., Mahboob, M., Lowe, R.L.: Mechanical properties of defective carbon nanotube/polyethylene nanocomposites: a molecular dynamics simulation study. Polym. Compos. (2014).  https://doi.org/10.1002/pc.23182 Google Scholar
  3. 3.
    Parvaneh, V., Shariati, M., Torabi, H.: Bending buckling behavior of perfect and defective single-walled carbon nanotubes via a structural mechanics model. Acta Mech. 223, 2369–2378 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using 283 MD. Acta Mech. (2018).  https://doi.org/10.1007/s00707-018-2123-5
  5. 5.
    Che, J.W., Cagin, T., Goddard, W.A.: Thermal conductivity of carbon nanotubes. Nanotechnology 11, 65–69 (2000)CrossRefGoogle Scholar
  6. 6.
    Yamamoto, T., Watanabe, K.: Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96, 255503 (2006)CrossRefGoogle Scholar
  7. 7.
    Kondo, N., Yamamoto, T., Watanabe, K.: Molecular-dynamics simulations of thermal transport in carbon nanotubes with structural defects. J. Surf. Sci. Nanotechnol. 4, 239–243 (2006)CrossRefGoogle Scholar
  8. 8.
    Sevik, C., Sevinçli, H., Cuniberti, G., Çağın, T.: Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 11, 4971–4977 (2011)CrossRefGoogle Scholar
  9. 9.
    Alamusi, Hu, N., Jia, B., Arai, M., Yan, C., Li, J., Liu, Y., Atobe, S., Fukunaga, H.: Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations. Comput. Mater. Sci. 54, 249–254 (2012)CrossRefGoogle Scholar
  10. 10.
    Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRefGoogle Scholar
  11. 11.
    Shen, L.X., Li, J.: Transversely isotropic elastic properties of single-walled carbon nanotubes. Phys. Rev. B 69, 045414 (2004)CrossRefGoogle Scholar
  12. 12.
    Wernik, J.M., Meguid, A.: Atomistic-based continuum modeling of the nonlinear behavior of carbon nanotubes. Acta Mech. 212, 167–179 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, L.F., Hu, H.Y.: Thermal vibration of double-walled carbon nanotubes predicted via double-Euler-beam model and molecular dynamics. Acta Mech. 223, 2107–2115 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Interfacial and mechanical properties of epoxy nanocomposites using different multiscale modeling schemes. Compos. Struct. 131, 545–555 (2015)CrossRefGoogle Scholar
  15. 15.
    Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polymer 70, 149–160 (2015)CrossRefGoogle Scholar
  16. 16.
    Kundalwal, S.I., Kumar, S.: Multiscale modeling of stress transfer in continuous microscale fiber reinforced composites with nano-engineered interphase. Mech. Mater. 102, 117–131 (2016)CrossRefGoogle Scholar
  17. 17.
    Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech. A/Solids 64, 69–84 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Plimpton, S.: Fast Parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)CrossRefGoogle Scholar
  20. 20.
    Mielke, S.L., Troya, D., Zhang, S., Li, J.L., Xiao, S.P., Car, R., Ruoff, R.S., Schatz, G.C., Belytschko, T.: The role of vacancy defects and holes in the fracture of carbon nanotubes. Chem. Phys. Lett. 390, 413–420 (2004)CrossRefGoogle Scholar
  21. 21.
    Kwon, Y.K., Berber, S., Tomanek, D.: Thermal contraction of carbon fullerenes and nanotubes. Phys. Rev. Lett. 92, 015901 (2004)CrossRefGoogle Scholar
  22. 22.
    Jiang, J.W., Wang, J.S., Li, B.W.: Thermal expansion in single-walled carbon nanotubes and graphene: nonequilibrium Green’s function approach. Phys. Rev. B 80, 5429 (2009)Google Scholar
  23. 23.
    Xiao, J.R., Gama, B.A., Gillespie, J.W.: An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solid Struct. 42, 3075–3092 (2005)CrossRefzbMATHGoogle Scholar
  24. 24.
    Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.S.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430 (2002)CrossRefGoogle Scholar
  25. 25.
    Jiang, H., Zhang, P., Liu, B., Huang, Y., Geubelle, P.H., Gao, H., Hwang, K.C.: The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429–442 (2003)CrossRefGoogle Scholar
  26. 26.
    Kim, P., Shi, L., Majumdar, A., McEuen, P.L.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  27. 27.
    Wei, L., Yanhui, F., Jia, P., Xinxin, Z.: Effects of Stone–Wales defects on the thermal conductivity of carbon nanotubes. J. Heat Trans. 134, 092401–092401 (2012)CrossRefGoogle Scholar
  28. 28.
    Müller-Plathe, F.: A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082–6085 (1997)CrossRefGoogle Scholar
  29. 29.
    Xu, Z.P., Buehler, M.J.: Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology 20, 185701 (2009)CrossRefGoogle Scholar
  30. 30.
    Krasheninnikov, A.V., Nordlund, K.: Irradiation effects in carbon nanotubes. Nucl. Instrum. Meth. Phys. Res. Sect. B 216, 355–366 (2004)CrossRefGoogle Scholar
  31. 31.
    Schelling, P.K., Keblinski, R.: Thermal expansion of carbon structures. Phys. Rev. B 68, 035425 (2003)CrossRefGoogle Scholar
  32. 32.
    Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013 (1998)CrossRefGoogle Scholar
  33. 33.
    Cummings, A., Osman, M., Srivastava, D., Menon, M.: Thermal conductivity of Y-junction carbon nanotubes. Phys. Rev. B 70, 115405 (2004)CrossRefGoogle Scholar
  34. 34.
    Zhang, G., Li, B.W.: Thermal conductivity of nanotubes revisited: effects of chirality, isotope impurity, tube length, and temperature. J. Chem. Phys. 123, 114714 (2005)CrossRefGoogle Scholar
  35. 35.
    Bi, K.D., Chen, Y.F., Yang, J.K., Wang, Y.J., Chen, M.H.: Molecular dynamics simulation of thermal conductivity of single-wall carbon nanotubes. Phys. Lett. A 350, 150–153 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Applied and Theoretical Mechanics Laboratory, Discipline of Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations