A numerical analysis of pressure drop and particle capture efficiency by rectangular fibers using LB-DE methods

Original Paper
  • 30 Downloads

Abstract

In this work, a coupled lattice Boltzmann method (LBM) and discrete element method (DEM) are used to simulate the particle transport and deposition on rectangular fibers of a clean filter. The LBM is employed to describe the fluid flow around the fibers, whereas the DEM is used to deal with the particle dynamics. The effects of the Reynolds number, the fiber aspect ratio and the arrangement of fibers (i.e., orientation angle of a fiber) on the pressure drop and capture efficiency are investigated at the initial stage of the filtration process. The quality factor, commonly used to determine the filtration performance, is also studied. The simulation results illustrate that both pressure drop and capture efficiency are dependent on the orientation angle and aspect ratio. The Reynolds number has only a slight influence on the capture efficiency but has a significant effect on the pressure drop for high aspect ratio. A good filter performance can be obtained for a square fiber when the orientation angle is \(\pi /4\) from the quality factor standpoint.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu, C., Lin, C.H., Cheung, C.S.: Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol. 112, 149–162 (2000)CrossRefGoogle Scholar
  2. 2.
    Wang, K., Zhao, H.: The influence of fiber geometry and orientation angle on filtration performance. Aerosol Sci. Technol. 49, 75–85 (2015)CrossRefGoogle Scholar
  3. 3.
    Wang, J., Pui David, Y.H.: Filtration of aerosol particles by elliptical fibers: a numerical study. J. Nanopart. Res. 11, 185–196 (2009)CrossRefGoogle Scholar
  4. 4.
    Kuwabara, S.: The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small reynolds numbers. J. Phys. Soc. Jpn. 14, 527–537 (1959)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lee, K.W., Liu, B.Y.H.: Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci. Technol. 1, 147–161 (1982)CrossRefGoogle Scholar
  6. 6.
    Schweers, E., Umhauer, H., Lbffler, F.: Experimental investigation of particle collection on single fibres of different configurations. Part. Part. Syst. Charact. 1, 275–283 (1994)CrossRefGoogle Scholar
  7. 7.
    Augusto, L.L.X., Ross-jones, J., Lopes, G.C., Tronville, P., Gonalves, J.A.S., Krause, M.J.: Microfiber filter performance prediction using a lattice Boltzmann method. Commun. Comput. Phys. 23(4), 122 (2018)Google Scholar
  8. 8.
    Liu, Z.G., Wang, P.K.: Pressure drop and interception efficiency of multifiber filters. Aerosol Sci. Technol. 26, 313–325 (1997)CrossRefGoogle Scholar
  9. 9.
    Stechkina, I.B., Kirsch, A., Fuchs, N.A.: Studies in fibrous aerosol filters. IV. Calculation of aerosol deposition in model filters in the range of maximum penetration. Ann. Occup. Hyg. 12, 1–8 (1969)Google Scholar
  10. 10.
    Fan, J., Lominé, F., Hellou, M.: Numerical study of particle capture efficiency in granular filter. EPJ Web of Conferences 140, 03,003 (2017)Google Scholar
  11. 11.
    Rabiee, B.M., Talebi, S., Abouali, O., Izadpanah, E.: Investigation of the characteristics of particulate flows through fibrous filters using the lattice boltzmann method. Particuology 21, 90–98 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, H., Zhao, H., Guo, Z., Zheng, C.: Numerical simulation of particle capture process of fibrous filters using lattice boltzmann two-phase flow model. Powder Technol. 227, 111–122 (2012)CrossRefGoogle Scholar
  13. 13.
    Jafari, S., Salmanzadeh, M., Rahnama, M., Ahmadi, G.: Investigation of particle dispersion and deposition in a channel with a square cylinder obstruction using the lattice boltzmann method. J. Aerosol Sci. 41, 198–206 (2010)CrossRefGoogle Scholar
  14. 14.
    Hosseini, S.A., Tafreshi, H.V.: On the importance of fibers cross-sectional shape for air filters operating in the slip flow regime. Powder Technol. 212, 425–431 (2011)CrossRefGoogle Scholar
  15. 15.
    Kirsh, V.A.: Stokes flow and deposition of aerosol nanoparticles in model filters composed of elliptic fibers. Colloid J. 73, 345–351 (2011)CrossRefGoogle Scholar
  16. 16.
    Huang, H., Wang, K., Zhao, H.: Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technol. 292, 232–241 (2016)CrossRefGoogle Scholar
  17. 17.
    Fardi, B., Liu, B.Y.H.: Flow field and pressure drop of filters with rectangular fibers. Aerosol Sci. Technol. 17, 36–44 (1992)CrossRefGoogle Scholar
  18. 18.
    Fardi, B., Liu, B.Y.H.: Efficiency of fibrous filters with rectangular fibers. Aerosol Sci. Technol. 17, 4558 (1992)Google Scholar
  19. 19.
    Wang, C.Y.: Stokes flow through an array of rectangular fibers. Int. J. Multiph. Flow 22, 185–194 (1996)CrossRefMATHGoogle Scholar
  20. 20.
    Ouyang, M., Liu, B.Y.H.: Analytical solution of flow field and pressure drop for filters with rectangular fibers. J. Aerosol Sci. 29, 187–196 (1998)CrossRefGoogle Scholar
  21. 21.
    Chen, S., Cheung, C.S., Chan, C.K., Zhu, C.: Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres. Comput. Mech. 28, 152–161 (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Filippova, O., Häanel, D.: Lattice-boltzmann simulation of gas-particle flow in filters. Comput. Fluids 26, 697–712 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    Przekop, R., Moskal, A., Gradoń, L.: Lattice-boltzmann approach for description of the structure of deposited particulate matter in fibrous filters. J. Aerosol Sci. 34, 133–147 (2003)CrossRefGoogle Scholar
  24. 24.
    Lantermann, Udo, Hänel, Dieter: Particle monte carlo and latticeboltzmann methods for simulations of gas-particle flows. Comput. Fluids 36, 407–422 (2007)CrossRefMATHGoogle Scholar
  25. 25.
    Wang, H., Zhao, H., Wang, K., He, Y., Zheng, C.: Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. J. Aerosol Sci. 66, 164–178 (2013)CrossRefGoogle Scholar
  26. 26.
    Lin, K.C., Tao, H., Lee, K.W.: An early stage of aerosol particle transport in flows past periodic arrays of clear staggered obstructions: a computational study. Aerosol Sci. Technol. 48, 1299–1307 (2014)CrossRefGoogle Scholar
  27. 27.
    Ansari, V., Goharrizi, A.S., Jafari, S., Abolpour, B.: Numerical study of solid particles motion and deposition in a filter with regular and irregular arrangement of blocks with using lattice boltzmann method. Comput. Fluids 108, 170–178 (2015)CrossRefGoogle Scholar
  28. 28.
    Deng, Y., Liu, Z., Zhang, P., Liu, Y., Wu, Y.: Topology optimization of unsteady incompressible Navier–Stokes flows. J. Comput. Phys. 230(17), 6688–6708 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Deng, Y., Liu, Z., Wu, J., Wu, Y.: Topology optimization of steady Navier–Stokes flow with body force. Comput. Methods Appl. Mech. Eng. 255, 306–321 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    De Rosis, A., Falcucci, G., Ubertini, S., Ubertini, F., Succi, S.: Lattice Boltzmann analysis of fluid-structure interaction with moving boundaries. Commun. Comput. Phys. 13, 823–834 (2013)CrossRefMATHGoogle Scholar
  31. 31.
    Ernst, M., Dietzel, M., Sommerfeld, M.: A lattice Boltzmann method for simulating transport and agglomeration of resolved particles. Acta Mech. 224(10), 2425–2449 (2013)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Trunk, R., Henn, T., Drfler, W., Nirschl, H., Krause, M.J.: Inertial dilute particulate fluid flow simulations with an Euler–Euler lattice Boltzmann method. J. Comput. Sci. 17, 438445 (2016)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Elghobashi, S.: Particle-laden turbulent flows: direct simulation and closure models. Appl. Sci. Res. 48, 301314 (1991)CrossRefMATHGoogle Scholar
  34. 34.
    Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994)CrossRefGoogle Scholar
  35. 35.
    Cundall, P.A., Strack, O.: Discrete numerical model for granular assemblies. Geomechanics 29, 47–65 (1979)Google Scholar
  36. 36.
    Lominé, F., Oger, L.: Dispersion of particles by spontaneous interparticle percolation through unconsolidated porous media. Phys. Rev. E 79, 1–12 (2009)CrossRefGoogle Scholar
  37. 37.
    Lominé, F., Oger, L.: Transit time during the interparticle percolation process. Phys. Rev. E 82, 041–301 (2010)CrossRefGoogle Scholar
  38. 38.
    Feng, Y.T., Han, K., Owen, D.R.J.: Coupled lattice Boltzmann method and discrete element modelling of particle transport in turbulent fluid flows: computational issues. Int. J. Numer. Methods Eng. 72, 1111–1134 (2007)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Lominé, F., Scholtès, L., Sibille, L., Poullain, P.: Modeling of fluid–solid interaction in granular media with coupled lattice boltzmann/discrete element methods: application to piping erosion. Int. J. Numer. Anal. Methods Geomech. 37, 577–596 (2013)CrossRefGoogle Scholar
  40. 40.
    D’Humières, D., Lallemand, P., Frisch, U.: Lattice gas models for 3D hydrodynamics. Europhys. Lett. 2, 291–297 (1986)CrossRefGoogle Scholar
  41. 41.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)CrossRefMATHGoogle Scholar
  42. 42.
    Qian, Y.H., DHumières, D., Lallemand, P.: Lattice bgk models for navierstokes equation. Europhys. Lett. 17, 479–484 (1992)CrossRefGoogle Scholar
  43. 43.
    Zou, Q., He, X.: Lattice bgk models for navier–stokes equation. Phys. Fluids 9, 1591–1598 (1997)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized boltzmann equation. part 1. Theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Behrend, O.: Solid-fluid boundaries in particle suspension simulations via the lattice boltzmann method. Phys. Rev. E 52, 1164–1175 (1995)CrossRefGoogle Scholar
  46. 46.
    Schwager, T., Poschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9, 465–469 (2007)CrossRefGoogle Scholar
  47. 47.
    Verlet, L.: Computer experiments on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159, 98–103 (1967)CrossRefGoogle Scholar
  48. 48.
    Duval, H., Masson, D., Guillot, J.B., Schmitz, P., Humières, D.: Two-dimensional lattice-boltzmann model of hydrosol depth filtration. AIChE J. 52, 39–48 (2006)CrossRefGoogle Scholar
  49. 49.
    Fan, J., Lominé, F., Hellou, M.: Modelling particle capture efficiency with lattice boltzmann method. Commun. Comput. Phys. 23(4), 932–950 (2018)Google Scholar
  50. 50.
    Kuo, Y.M., Huang, S.H., Lin, W.Y., Hsiao, M.F., Chen, C.C.: Filtration and loading characteristics of granular bed filters. J. Aerosol Sci. 41, 223–229 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Civil and Mechanical EngineeringINSA de RennesRennesFrance

Personalised recommendations