Acta Mechanica

, Volume 229, Issue 4, pp 1537–1550 | Cite as

A continuous 1-D model for the coiling of a weakly viscoelastic jet

Original Paper
  • 18 Downloads

Abstract

Currently, coiling problems for an elastic rope and viscous jet have been extensively studied, but there are few theoretical studies for modeling of viscoelastic jet coiling. In this paper, we have established a continuous one-dimensional (1-D) model for a weakly viscoelastic jet of Maxwell-type, considering jet radius variation and surface tension. The 1-D model is solved numerically by the continuation method to investigate the effects of relaxation time, the falling height, and the flow rate on the coiling frequency and falling time. The numerical results mainly show that for a weakly viscoelastic jet more frequency wiggles and lower frequencies appear than for the Newtonian flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 11602102), PhD Programs Foundation of Ludong University (No. LY2012017), Taishan Scholar Research Grant (Grant No. TSHW201502050), and Shangdong Province Young and Middle-Aged Scientists Research Awards Fund (No. BS2014SF016).

References

  1. 1.
    Mahadevan, L., Keller, J.B.: Coiling of exible ropes. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 452(1950), 1679–1694 (1996)CrossRefMATHGoogle Scholar
  2. 2.
    Habibi, M., Ribe, N.M., Bonn, D.: Coiling of elastic ropes. Phys. Rev. Lett. 99(15), 154302 (2007)CrossRefGoogle Scholar
  3. 3.
    Barnes, G., Woodcock, R.: Liquid rope-coil effect. Am. J. Phys. 26(4), 205–209 (1958)CrossRefGoogle Scholar
  4. 4.
    Barnes, G., Mackenzie, J.: Height of fall versus frequency in liquid rope-coil effect. Am. J. Phys. 27(2), 112–115 (1959)CrossRefGoogle Scholar
  5. 5.
    Tchavdarov, B., Yarin, A.L., Radev, S.: Buckling of thin liquid jets. J. Fluid Mech. 253, 593–615 (1993)CrossRefMATHGoogle Scholar
  6. 6.
    Mahadevan, L., Ryu, W.S., Samuel, A.D.T.: Fluid ‘rope trick’ investigated. Nature 392(6672), 140 (1998)CrossRefGoogle Scholar
  7. 7.
    Maleki, M.: Liquid rope coiling on a solid surface. Phys. Rev. Lett. 93(21), 214502 (2004)CrossRefGoogle Scholar
  8. 8.
    Habibi, M.: Dynamics of liquid rope coiling. Phys. Rev. E 74(6), 066306 (2006)CrossRefGoogle Scholar
  9. 9.
    Ribe, N.M.: Coiling of viscous jets. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460(2051), 3223–3239 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Ribe, N.M., Huppert, H.E., Hallworth, M.A., Habibi, M., Bonn, D.: Multiple coexisting states of liquid rope coiling. J. Fluid Mech. 555, 275–297 (2006)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Ribe, N.M., Habibi, M., Bonn, D.: Stability of liquid rope coiling. Phys. Fluids 18(8), 084102 (2006)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ribe, N.M., Habibi, M., Bonn, D.: Liquid rope coiling. Annu. Rev. Fluid Mech. 44, 249–266 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Majmudar, T., Varagnat, M., Hartt, W., McKinley, G.: Nonlinear dynamics of coiling in viscoelastic jets. arXiv:1012.2135 (2010). Accessed 18 Dec 2014
  14. 14.
    Rahmani, Y., Habibi, M., Javadi, A., Bonn, D.: Coiling of yield stress fluids. Phys. Rev. E 83(5), 056327 (2011)CrossRefGoogle Scholar
  15. 15.
    Olagunju, D.O.: A 1-D theory for extensional deformation of a viscoelastic filament under exponential stretching. J. Non-Newton. Fluid Mech. 87(1), 27–46 (1999)CrossRefMATHGoogle Scholar
  16. 16.
    Smolka, L.B., Belmonte, A., Henderson, D.M., Witelski, T.P.: Exact solution for the extensional flow of a viscoelastic filament. Eur. J. Appl. Math. 15(6), 679–712 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S.: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87(9), 4531–4547 (2000)CrossRefGoogle Scholar
  18. 18.
    Liu, Y., Wang, M.: A model and numerical study for coiling of Kelvin-type viscoelastic filament. Mech. Res. Commun. 70, 17–23 (2015)CrossRefGoogle Scholar
  19. 19.
    Varagnat, M., Majmudar, T., Hartt, W., Mckinley, G.: The folding motion of an axisymmetric jet of wormlike-micelles solution. arXiv:1011.1494 (2010). Accessed 25 Feb 2016
  20. 20.
    Irgens, F.: Continuum Mechanics. Springer, Berlin (2008)Google Scholar
  21. 21.
    Feng, J.J.: Stretching of a straight electrically charged viscoelastic jet. J. Non-Newton. Fluid Mech. 116(1), 55–70 (2003)CrossRefMATHGoogle Scholar
  22. 22.
    Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1969)MATHGoogle Scholar
  23. 23.
    Brun, P.T., Ribe, N.M., Audoly, B.: A numerical investigation of the fluid mechanical sewing machine. Phys. Fluids 24(4), 043102 (2012)CrossRefGoogle Scholar
  24. 24.
    Marheineke, N., Wegener, R.: Asymptotic model for the dynamics of curved viscous fibres with surface tension. J. Fluid Mech. 622, 345–369 (2009)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Doedel, E.J.: AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations. Concordia University. http://www.macs.hw.ac.uk/~gabriel/auto07/auto.html (2007). Accessed 18 Dec 2014
  26. 26.
    Trefethen, L.N.: Spectral Methods in MATLAB. Society for Industrial Mathematics, Philadelphia (2000)CrossRefMATHGoogle Scholar
  27. 27.
    Habibi, M., Moller, P., Ribe, N.M., Bonn, D.: Spontaneous generation of spiral waves by a hydrodynamic instability. EPL 81(3), 38004 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Habibi, M., Hosseini, H., Khatami, M.H., Ribe, N.M.: Liquid supercoiling. Phys. Fluids 26, 024101 (2014)CrossRefGoogle Scholar
  29. 29.
    Hosseini, H., Farnudi, A., Khatami, M.H., Habibi, M.: Bubble generation in liquid rope coiling. RSC Adv. 6(107), 105469–105475 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Civil EngineeringLudong UniversityYantaiChina
  2. 2.Center for Ports and Coastal Disaster MitigationLudong UniversityYantaiChina

Personalised recommendations