Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm
Original Paper
First Online:
Received:
Revised:
- 43 Downloads
Abstract
This paper presents the application of the biogeography-based optimization (BBO) and some of its variants in the optimization of stacking sequence of laminated composites. Harmony search is also implemented to compare its results with those of the BBO. The optimization objective is to maximize the buckling load of a symmetric and balanced laminated plate. Four laminated composites with different loadings and dimensions are studied, and the statistical comparison of the obtained configurations and buckling load capacities shows the high capability of the BBO with quadratic migration model in terms of robustness and global search.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Ghiasi, H., Pasini, D., Lessard, L.: Optimum stacking sequence design of composite materials. Part I: constant stiffness design. Compos. Struct. 90(1), 1–11 (2009). https://doi.org/10.1016/j.compstruct.2009.01.006
- 2.Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Design of variable-stiffness laminates using lamination parameters. Compos. Part B Eng. 37(4), 301–309 (2006)CrossRefGoogle Scholar
- 3.Fang, C., Springer, G.S.: Design of composite laminates by a Monte Carlo method. J. Compos. Mater. 27(7), 721–753 (1993)CrossRefGoogle Scholar
- 4.Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering. Springer, Basel (2017)CrossRefMATHGoogle Scholar
- 5.Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, Hoboken (2009)CrossRefMATHGoogle Scholar
- 6.Kaveh, A., Dadras, A.: A novel meta-heuristic optimization algorithm: thermal exchange optimization. Adv. Eng. Softw. 110(August), 69–84 (2017). https://doi.org/10.1016/j.advengsoft.2017.03.014
- 7.Kaveh, A., Dadras, A.: Structural damage identification using an enhanced thermal exchange optimization algorithm. Eng. Optim. (2017). https://doi.org/10.1080/0305215X.2017
- 8.Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
- 9.Soremekun, G., Gürdal, Z., Haftka, R., Watson, L.: Composite laminate design optimization by genetic algorithm with generalized elitist selection. Comput. Struct. 79(2), 131–143 (2001)CrossRefGoogle Scholar
- 10.Lin, C.-C., Lee, Y.-J.: Stacking sequence optimization of laminated composite structures using genetic algorithm with local improvement. Compos. Struct. 63(3), 339–345 (2004)CrossRefGoogle Scholar
- 11.Rao, A.R.M., Arvind, N.: A scatter search algorithm for stacking sequence optimisation of laminate composites. Compos. Struct. 70(4), 383–402 (2005)CrossRefGoogle Scholar
- 12.Erdal, O., Sonmez, F.O.: Optimum design of composite laminates for maximum buckling load capacity using simulated annealing. Compos. Struct. 71(1), 45–52 (2005)CrossRefGoogle Scholar
- 13.Almeida, F., Awruch, A.: Design optimization of composite laminated structures using genetic algorithms and finite element analysis. Compos. Struct. 88(3), 443–454 (2009)CrossRefGoogle Scholar
- 14.Karakaya, Ş., Soykasap, Ö.: Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Struct. Multidiscip. Optim. 39(5), 477–486 (2009)CrossRefGoogle Scholar
- 15.Sebaey, T., Lopes, C., Blanco, N., Costa, J.: Ant colony optimization for dispersed laminated composite panels under biaxial loading. Compos. Struct. 94(1), 31–36 (2011)CrossRefGoogle Scholar
- 16.Abachizadeh, M., Tahani, M.: An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost. Struct. Multidiscip. Optim. 37(4), 367–376 (2009)CrossRefGoogle Scholar
- 17.Omkar, S., Senthilnath, J., Khandelwal, R., Naik, G.N., Gopalakrishnan, S.: Artificial Bee Colony (ABC) for multi-objective design optimization of composite structures. Appl. Soft Comput. 11(1), 489–499 (2011)CrossRefGoogle Scholar
- 18.de Almeida, F.S.: Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Compos. Struct. 143, 287–299 (2016)CrossRefGoogle Scholar
- 19.Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
- 20.Vosoughi, A., Darabi, A., Forkhorji, H.D.: Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO. Compos. Struct. 159, 361–367 (2017)CrossRefGoogle Scholar
- 21.Setoodeh, A., Shojaee, M.: Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates. Polym. Compos. (2017). https://doi.org/10.1002/pc.24289
- 22.Guo, W., Wang, L., Wu, Q.: Numerical comparisons of migration models for multi-objective biogeography-based optimization. Inf. Sci. 328, 302–320 (2016)CrossRefGoogle Scholar
- 23.Simon, D., Ergezer, M., Du, D., Rarick, R.: Markov models for biogeography-based optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(1), 299–306 (2011)Google Scholar
- 24.Bhattacharya, A., Chattopadhyay, P.K.: Biogeography-based optimization for different economic load dispatch problems. IEEE Trans. Power Syst. 25(2), 1064–1077 (2010)CrossRefGoogle Scholar
- 25.Wang, L., Xu, Y.: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 38(12), 15103–15109 (2011)MathSciNetCrossRefGoogle Scholar
- 26.Roy, P., Ghoshal, S., Thakur, S.: Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization. Int. J. Electr. Power Energy Syst. 43(1), 830–838 (2012)CrossRefGoogle Scholar
- 27.Wang, G.-G., Gandomi, A.H., Alavi, A.H.: An effective krill herd algorithm with migration operator in biogeography-based optimization. Appl. Math. Model. 38(9), 2454–2462 (2014)MathSciNetCrossRefGoogle Scholar
- 28.Aydogdu, I.: Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights. Eng. Optim. 49(3), 381–400 (2017)CrossRefGoogle Scholar
- 29.Aydogdu, I., Akin, A.: Biogeography based Co\(_{2}\) and cost optimization of RC cantilever retaining walls. In: 17th International Conference on Structural Engineering, pp. 1480–1485 (2015)Google Scholar
- 30.Saka, M., Carbas, S., Aydogdu, I., Akin, A., Geem, Z.: Comparative study on recent metaheuristic algorithms in design optimization of cold-formed steel structures. In: Engineering and Applied Sciences Optimization, pp. 145–173. Springer, Berlin (2015)Google Scholar
- 31.Jalili, S., Hosseinzadeh, Y., Taghizadieh, N.: A biogeography-based optimization for optimum discrete design of skeletal structures. Eng. Optim. 48(9), 1491–1514 (2016)CrossRefGoogle Scholar
- 32.Çarbaş, S.: Optimum structural design of spatial steel frames via biogeography-based optimization. Neural Comput. Appl. 28(6), 1525–1539 (2017)CrossRefGoogle Scholar
- 33.Yang, G., Liu, Y.: Optimizing an equilibrium supply chain network design problem by an improved hybrid biogeography based optimization algorithm. Appl. Soft Comput. 58, 657–668 (2017)Google Scholar
- 34.Kaveh, A., Dadras, A.: Optimal decomposition of finite element meshes via k-median methodology and different metaheuristics. Int. J. Optim. Civil Eng. 8(2), 227–246 (2018)Google Scholar
- 35.Ma, H., Simon, D.: Evolutionary Computation with Biogeography-Based Optimization. Wiley, Hoboken (2017)CrossRefGoogle Scholar
- 36.Wu, J., Vankat, J.L.: Island biogeography: theory and applications. Encycl. Environ. Biol. 2, 371–379 (1995)Google Scholar
- 37.Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, vol. 2. Addison-Wesley, Reading (1989)Google Scholar
- 38.Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)MATHGoogle Scholar
- 39.Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, vol. 11. Springer Science & Business Media, Berlin (2012)MATHGoogle Scholar
Copyright information
© Springer-Verlag GmbH Austria, part of Springer Nature 2017