Advertisement

Fracture of a silicon nanowire at ultra-large elastic strain

  • 217 Accesses

  • 3 Citations

Abstract

Understanding the fracture behavior of one-dimensional (1-D) nanomaterials is critical for their functional device applications and maximizing their service life. At the nanoscale, solid materials’ fracture properties could significantly deviate from their bulk counterparts. Our recent study (Zhang et al. in Sci. Adv. 2(8):e1501382, 2016. https://doi.org/10.1126/sciadv.1501382) showed that silicon (Si) nanowires, one of the most important functional 1-D nanomaterials for nanoelectronics and nano-electro-mechanical systems, demonstrated distinctly different mechanical properties than microscale and bulk Si crystals with the elastic strain up to 10% or even more, approaching their theoretical elastic limit. It is therefore intriguing to understand the fracture behavior of a Si nanowire under such deep ultra-strength, as well as their failure mechanisms. In this work, we will experimentally study the fracture behavior of ultrahigh elastic Si nanowires in situ and quantitatively understand their fracture mechanics with the assist of molecular dynamics simulations. The insights obtained in this nanomechanical study may be of help on the development of robust Si nanowire-based mechatronic devices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Kang, K., Cai, W.: Brittle and ductile fracture of semiconductor nanowires–molecular dynamics simulations. Philos. Mag. 87(14–15), 2169–2189 (2007). https://doi.org/10.1080/14786430701222739

  2. 2.

    Lu, Y., Song, J., Huang, J.Y., Lou, J.: Fracture of sub-20 nm ultrathin gold nanowires. Adv. Funct. Mater. 21(20), 3982–3989 (2011). https://doi.org/10.1002/adfm.201101224

  3. 3.

    DelRio, F.W., Cook, R.F., Boyce, B.L.: Fracture strength of micro- and nano-scale silicon components. Appl. Phys. Rev. 2(2), 021303 (2015). https://doi.org/10.1063/1.4919540

  4. 4.

    Wang, Y., Xie, D., Ning, X., Shan, Z.: Thermal treatment-induced ductile-to-brittle transition of submicron-sized Si pillars fabricated by focused ion beam. Appl. Phys. Lett. 106(8), 081905 (2015). https://doi.org/10.1063/1.4913241

  5. 5.

    Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

  6. 6.

    Zhu, Y., Xu, F., Qin, Q., Fung, W.Y., Lu, W.: Mechanical properties of vapor–liquid–solid synthesized silicon nanowires. Nano Lett. 9(11), 3934–3939 (2009). https://doi.org/10.1021/nl902132w

  7. 7.

    Dongfeng, Z., Breguet, J.-M., Clavel, R., Sivakov, V., Christiansen, S., Michler, J.: In situ electron microscopy mechanical testing of silicon nanowires using electrostatically actuated tensile stages. J. Microelectromech. Syst. 19(3), 663–674 (2010). https://doi.org/10.1109/jmems.2010.2044746

  8. 8.

    Zhang, H., Tersoff, J., Xu, S., Chen, H., Zhang, Q., Zhang, K., Yang, Y., Lee, C.-S., Tu, K.-N., Li, J., Lu, Y.: Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2(8), e1501382 (2016). https://doi.org/10.1126/sciadv.1501382

  9. 9.

    Zhang, H., Jiang, C., Lu, Y. (2016) Low-cycle fatigue testing of Ni nanowires based on a micro-mechanical device. Exp. Mech. https://doi.org/10.1007/s11340-016-0199-1

  10. 10.

    Lu, Y., Ganesan, Y., Lou, J.: A multi-step method for in situ mechanical characterization of 1-D nanostructures using a novel micromechanical device. Exp. Mech. 50(1), 47–54 (2010). https://doi.org/10.1007/s11340-009-9222-0

  11. 11.

    Ganesan, Y., Lu, Y., Peng, C., Lu, H., Ballarini, R., Lou, J.: Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials. J. Microelectromech. Syst. 19(3), 675–682 (2010). https://doi.org/10.1109/Jmems.2010.2046014

  12. 12.

    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Butterworth Heinemann, Oxford (1986)

  13. 13.

    Jain, M.C.: Textbook of Engineering Physics (Part I). PHI Learning Private Limited, New Delhi (2009)

  14. 14.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

  15. 15.

    Lenosky, T.J., Sadigh, B., Alonso, E., Bulatov, V.V., de la Rubia, T.D., Kim, J., Voter, A.F., Kress, J.D.: Highly optimized empirical potential model of silicon. Modell. Simul. Mater. Sci. Eng. 8(6), 825 (2000)

  16. 16.

    Du, Y.A., Lenosky, T.J., Hennig, R.G., Goedecker, S., Wilkins, J.W.: Energy landscape of silicon tetra-interstitials using an optimized classical potential. Phys. Status Solidi (b) 248(9), 205–2055 (2011)

  17. 17.

    Fukata, N., Kasuya, A., Suezawa, M.: Formation energy of vacancy in silicon determined by a new quenching method. Phys. B Condens. Matter 308–310, 1125–1128 (2001). https://doi.org/10.1016/S0921-4526(01)00908-5

  18. 18.

    Fukata, N., Kasuya, A., Suezawa, M.: Vacancy formation energy of silicon determined by a new quenching method. Jpn. J. Appl. Phys. 40(8B), L854 (2001)

  19. 19.

    Sanders, I.R., Dobson, P.S.: Oxidation, defects and vacancy diffusion in silicon. Philos. Mag. 20(167), 881–893 (1969). https://doi.org/10.1080/14786436908228058

  20. 20.

    Hull, R.: Properties of Crystalline Silicon, vol. 20. IET, London (1999)

  21. 21.

    Saito, M., Ohno, T., Yamasaki, T.: Density-functional-theory-based calculations of formation energy and concentration of the silicon monovacancy. Jpn. J. Appl. Phys. 54(4), 041301 (2015)

  22. 22.

    Dannefaer, S., Mascher, P., Kerr, D.: Monovacancy formation enthalpy in silicon. Phys. Rev. Lett. 56(20), 2195–2198 (1986)

  23. 23.

    Liu, Q., Wang, L., Shen, S.: Effect of surface roughness on elastic limit of silicon nanowires. Comput. Mater. Sci. 101, 267–274 (2015)

  24. 24.

    Schiavone, A., Abeygunawardana-Arachchige, G., Silberschmidt, V.V.: Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech. 227(1), 203–215 (2016)

  25. 25.

    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 221(582—-593), 163–198 (1921). https://doi.org/10.1098/rsta.1921.0006

  26. 26.

    Xu, S., Yan, Z., Jang, K.-I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H.U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R.G., Huang, Y., Zhang, Y., Rogers, J.A.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347(6218), 154–159 (2015). https://doi.org/10.1126/science.1260960

  27. 27.

    Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S., Lieber, C.M.: Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11(11), 986–994 (2012). https://doi.org/10.1038/nmat3404

Download references

Author information

Correspondence to Alice Hu or Yang Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video S1--- the MD simulation video shows the multi-step fractrue process of an ultra elastic Si nanowire upon tensile loading (Vedio 376kb)

Supplementary Video S1--- the MD simulation video shows the multi-step fractrue process of an ultra elastic Si nanowire upon tensile loading (Vedio 376kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Fung, K., Zhuang, Y. et al. Fracture of a silicon nanowire at ultra-large elastic strain. Acta Mech 230, 1441–1449 (2019) doi:10.1007/s00707-017-2015-0

Download citation