Acta Mechanica

, Volume 229, Issue 2, pp 423–436 | Cite as

Switching between different types of stability isles in films over topographies

  • Mario Schörner
  • Daniel Reck
  • Nuri Aksel
  • Yuri Trifonov
Original Paper


In the present study, we performed comprehensive experiments and direct Navier–Stokes computations on the linear stability of gravity-driven film flows. We focused on the switching between different types of stability isles, appearing in viscous films over inclined topographies, which describes an abrupt change of the flow’s free-surface stability. We systematically varied the inclination angle, the liquid, the substrate’s shape and the corrugation’s periodicity and uncovered when this phenomenon appears and how it proceeds. Our combined experimental and numerical work unveiled that the switching is of a universal nature as it can be induced by a slight variation of one of the multitude of completely differing parameters mentioned above. The in-depth investigation of this phenomenon presented in this article is of interest for the technical exploitation of film flows as it puts the reader into the position to avoid high-risk situations where a small change of the system’s configuration leads to a significantly different system response.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank Marion Märkl, Stephan Eißner and Dominik Schröder for their help in carrying out parts of the experiments and kindly acknowledge the DAAD for providing a visiting fellowship for Prof. Trifonov, Grant No. 91577374, which made this project possible.


  1. 1.
    Kistler, S.F., Schweizer, P.M.: Liquid Film Coating. Chapman and Hall, New York (1997)CrossRefGoogle Scholar
  2. 2.
    Quéré, D.: Fluid coating on a fibre. Annu. Rev. Fluid Mech. 31, 347–384 (1999)CrossRefGoogle Scholar
  3. 3.
    Weinstein, S.J., Ruschak, K.J.: Coating flows. Annu. Rev. Fluid Mech. 36, 29–53 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gugler, G., Beer, R., Mauron, M.: Operative limits of curtain coating due to edges. Chem. Eng. Process. Process Intensif. 50, 462–465 (2011)CrossRefGoogle Scholar
  5. 5.
    Kraus, A., Bar-Cohen, A., Wative, A.A.: Cooling Electronic Equipment, 3rd edn. Wiley, Hoboken (2006)Google Scholar
  6. 6.
    Fair, J.R., Bravo, J.R.: Distillation columns containing structured packing. Chem. Eng. Prog. 86, 19–29 (1990)Google Scholar
  7. 7.
    DeSantos, J.M., Melli, T.R., Scriven, L.E.: Mechanics of gas-liquid flow in packed-bed contactors. Annu. Rev. Fluid Mech. 23, 233–260 (1991)CrossRefGoogle Scholar
  8. 8.
    Webb, R.L.: Principles of Enhanced Heat Transfer. Wiley, New York (1994)Google Scholar
  9. 9.
    Vlasogiannis, P., Karagiannis, G., Argyropoulos, P., Bontozoglou, V.: Air–water two-phase flow and heat transfer in a plate heat exchanger. Int. J. Multiph. Flow 28, 757–772 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Valluri, P., Matar, O.K., Hewitt, G.F., Mendes, M.A.: Thin film flow over structured packings at moderate Reynolds numbers. Chem. Eng. Sci. 60, 1965–1975 (2005)CrossRefGoogle Scholar
  11. 11.
    Helbig, K., Nasarek, R., Gambaryan-Roisman, T., Stephan, P.: Effect of longitudinal minigrooves on flow stability and wave characteristics of falling liquid films. J. Heat Transf. 131, 011601 (2009)CrossRefGoogle Scholar
  12. 12.
    Bull, J.L., Grotberg, J.B.: Surfactant spreading on thin viscous films: film thickness evolution and periodic wall stretch. Exp. Fluids 34, 1–15 (2003)CrossRefGoogle Scholar
  13. 13.
    Stone, A.H., Strook, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kapitza, P.L.: Wave flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 18, 3–28 (1948)Google Scholar
  15. 15.
    Kapitza, P.L., Kapitza, S.P.: Wavy flow of thin layers of a viscous fluid. Zh. Eksp. Teor. Fiz. 19, 105–120 (1949)zbMATHGoogle Scholar
  16. 16.
    Benjamin, T.B.: Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554–574 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yih, C.S.: Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321–334 (1963)CrossRefzbMATHGoogle Scholar
  18. 18.
    Gjevik, B.: Occurrence of finite-amplitude surface waves on falling liquid films. Phys. Fluids 13, 1918–1925 (1970)CrossRefzbMATHGoogle Scholar
  19. 19.
    Alekseenko, S.V., Nakoryakov, V.Y., Pokusaev, B.G.: Wave formation on a vertical falling liquid film. AIChE 31, 1446–1460 (1985)CrossRefzbMATHGoogle Scholar
  20. 20.
    Liu, J., Paul, J.D., Gollub, J.P.: Measurements of the primary instabilities of film flows. J. Fluid Mech. 250, 69–101 (1993)CrossRefGoogle Scholar
  21. 21.
    Chang, H.C.: Wave evolution on a falling film. Annu. Rev. Fluid Mech. 26, 103–136 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, J., Gollub, J.P.: Solitary wave dynamics of film flows. Phys. Fluids 6, 1702–1712 (1994)CrossRefGoogle Scholar
  23. 23.
    Vlachogiannis, M., Bontozoglou, V.: Observations of solitary wave dynamics of film flows. J. Fluid Mech. 435, 191–215 (2001)CrossRefzbMATHGoogle Scholar
  24. 24.
    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)CrossRefGoogle Scholar
  25. 25.
    Chang, H.C., Demekhin, E.A.: Complex Wave Dynamics on Thin Films. Elsevier, Amsterdam (2002)Google Scholar
  26. 26.
    Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81, 1131–1198 (2009)CrossRefGoogle Scholar
  27. 27.
    Trifonov, Y.Y.: Stability and nonlinear wavy regimes in downward film flows on a corrugated surface. J. Appl. Mech. Tech. Phys. 48, 91–100 (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Trifonov, Y.Y.: Counter-current gas-liquid flow between vertical corrugated plates. Chem. Eng. Sci. 66, 4851–4866 (2011)CrossRefGoogle Scholar
  29. 29.
    Argyriadi, K., Vlachogiannis, M., Bontozoglou, V.: Experimental study of inclined film flow along periodic corrugations: the effect of wall steepness. Phys. Fluids 18, 012102 (2006)CrossRefGoogle Scholar
  30. 30.
    Reck, D., Aksel, N.: Experimental study on the evolution of traveling waves over an undulated incline. Phys. Fluids 25, 102101 (2013)CrossRefGoogle Scholar
  31. 31.
    Vlachogiannis, M., Bontozoglou, V.: Experiments on laminar film flow along a periodic wall. J. Fluid Mech. 457, 133–156 (2002)CrossRefzbMATHGoogle Scholar
  32. 32.
    Wierschem, A., Lepski, C., Aksel, N.: Effect of long undulated bottoms on thin gravity-driven films. Acta Mech. 179, 41–66 (2005)CrossRefzbMATHGoogle Scholar
  33. 33.
    Wierschem, A., Aksel, N.: Instability of a liquid film flowing down an inclined wavy plane. Physica D 186, 221–237 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Dávalos-Orozco, L.A.: Nonlinear instability of a thin film flowing down a smoothly deformed surface. Phys. Fluids 19, 074103 (2007)CrossRefzbMATHGoogle Scholar
  35. 35.
    Dávalos-Orozco, L.A.: Instabilities of thin films flowing down flat and smoothly deformed walls. Microgravity Sci. Technol. 20, 225–229 (2008)CrossRefGoogle Scholar
  36. 36.
    Trifonov, Y.Y.: Viscous liquid film flows over a vertical corrugated surface and the film free surface stability. Russ. J. Eng. Thermophys. 10(2), 129–145 (2000)Google Scholar
  37. 37.
    Trifonov, Y.Y.: Stability of a viscous liquid film flowing down a periodic surface. Int. J. Multiph. Flow 33, 1186–1204 (2007)CrossRefGoogle Scholar
  38. 38.
    Trifonov, Y.Y.: Stability and bifurcations of the wavy film flow down a vertical plate: the results of integral approaches and full-scale computations. Fluid Dyn. Res. 44, 031418 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    D’Alessio, S.J.D., Pascal, J.P., Jasmine, H.A.: Instability in gravity-driven flow over uneven surfaces. Phys. Fluids 21, 062105 (2009)CrossRefzbMATHGoogle Scholar
  40. 40.
    Heining, C., Aksel, N.: Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline. Int. J. Multiph. Flow 36, 847–857 (2010)CrossRefGoogle Scholar
  41. 41.
    Cao, Z., Vlachogiannis, M., Bontozoglou, V.: Experimental evidence for a short-wave global mode in film flow along periodic corrugations. J. Fluid Mech. 718, 304–320 (2013)CrossRefzbMATHGoogle Scholar
  42. 42.
    Tseluiko, D., Blyth, M.G., Papageorgiou, D.T.: Stability of film flow over inclined topography based on a long-wave nonlinear model. J. Fluid Mech. 729, 638–671 (2013)Google Scholar
  43. 43.
    Pollak, T., Aksel, N.: Crucial flow stabilization and multiple instability branches of gravity-driven films over topography. Phys. Fluids 25, 024103 (2013)CrossRefGoogle Scholar
  44. 44.
    Trifonov, Y.Y.: Stability of a film flowing down an inclined corrugated plate: the direct Navier–Stokes computations and Floquet theory. Phys. Fluids 26, 114101 (2014)CrossRefGoogle Scholar
  45. 45.
    Schörner, M., Reck, D., Aksel, N.: Does the topography’s specific shape matter in general for the stability of film flows? Phys. Fluids 27, 042103 (2015)CrossRefGoogle Scholar
  46. 46.
    Schörner, M., Reck, D., Aksel, N.: Stability phenomena far beyond the Nusselt flow—revealed by experimental asymptotics. Phys. Fluids 28, 022102 (2016)CrossRefGoogle Scholar
  47. 47.
    Spurk, J.H., Aksel, N.: Fluid Mechanics, 2nd edn. Springer, Berlin (2008)zbMATHGoogle Scholar
  48. 48.
    Pollak, T., Haas, A., Aksel, N.: Side wall effects on the instability of thin gravity-driven films—from long-wave to short-wave instability. Phys. Fluids 23, 094110 (2011)CrossRefGoogle Scholar
  49. 49.
    Georgantaki, A., Vatteville, J., Vlachogiannis, M., Bontozoglou, V.: Measurements of liquid film flow as a function of fluid properties and channel width: evidence for surface-tension-induced long-range transverse coherence. Phys. Rev. E 84, 026325 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Department of Applied Mechanics and Fluid DynamicsUniversity of BayreuthBayreuthGermany
  2. 2.Institute of ThermophysicsSiberian Branch of Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations