Acta Mechanica

, Volume 228, Issue 10, pp 3581–3593 | Cite as

The meshless finite point method for transient elastodynamic problems

  • Arman Shojaei
  • Farshid MossaibyEmail author
  • Mirco Zaccariotto
  • Ugo Galvanetto
Original Paper


In this paper, the application of the meshless finite point method (FPM) to solve elastodynamic problems through an explicit velocity–Verlet time integration method is investigated. Strong form-based methods, such as the FPM, are generally less stable and accurate in terms of satisfaction of Neumann boundary conditions than weak form-based methods. This is due to the fact that in such types of methods, Neumann boundary conditions must be imposed by a series of equations which are different from the governing equations in the problem domain. In this paper, keeping all the advantages of FPM in terms of simplicity and efficiency, a new simple strategy for proper satisfaction of Neumann boundary conditions in time for elastodynamic problems is investigated. The method is described in detail, and several numerical examples are presented. Moreover, the accuracy of the method with reference to the solution of some 3D problems is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The support of the ‘Visiting Scientist’ scheme of Padua university is gratefully acknowledged.


  1. 1.
    AMGCL C++ library. Accessed 11 Feb 2017
  2. 2.
    Bajko, J., Čermák, L., Jícha, M.: High order finite point method for the solution to the sound propagation problems. Comput. Methods Appl. Mech. Eng. 280, 157–175 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belytschko, T., Lu, Y.Y., Gu, L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37(2), 229–256 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boroomand, B., Najjar, M., Oñate, E.: The generalized finite point method. Comput. Mech. 44(2), 173–190 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boroomand, B., Tabatabaei, A.A., Oñate, E.: Simple modifications for stabilization of the finite point method. Int. J. Numer. Methods Eng. 63(3), 351–379 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dai, B., Wang, Q., Zhang, W., Wang, L.: The complex variable meshless local Petrov–Galerkin method for elastodynamic problems. Appl. Math. Comput. 243, 311–321 (2014). doi: 10.1016/j.amc.2014.05.123 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Fang, J., Parriaux, A.: A regularized Lagrangian finite point method for the simulation of incompressible viscous flows. J. Comput. Phys. 227(20), 8894–8908 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giunta, G., Belouettar, S., Ferreira, A.J.M.: A static analysis of three-dimensional functionally graded beams by hierarchical modelling and a collocation meshless solution method. Acta Mech. 227(4), 969–991 (2016). doi: 10.1007/s00707-015-1503-3 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hsieh, P.W., Shih, Y., Yang, S.Y.: A tailored finite point method for solving steady MHD duct flow problems with boundary layers. Commun. Comput. Phys. 10(01), 161–182 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    La Rocca, A., Power, H.: A double boundary collocation hermitian approach for the solution of steady state convection–diffusion problems. Comput. Math. Appl. 55(9), 1950–1960 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Liszka, T., Duarte, C., Tworzydlo, W.: hp-Meshless cloud method. Comput. Methods Appl. Mech. Eng. 139(1–4), 263–288 (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, G., Gu, Y.: A meshfree method: meshfree weak–strong (mws) form method, for 2-d solids. Comput. Mech. 33(1), 2–14 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Liu, G., Wu, Y., Ding, H.: Meshfree weak–strong (mws) form method and its application to incompressible flow problems. Int. J. Numer. Meth. Fluids 46(10), 1025–1047 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. Taylor & Francis, London (2010)Google Scholar
  15. 15.
    Mirzaei, D., Hasanpour, K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 227(3), 619–632 (2016). doi: 10.1007/s00707-015-1494-0 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mossaiby, F., Ghaderian, M.: A preliminary study on the meshless local exponential basis functions method for nonlinear and variable coefficient pdes. Eng. Comput. 33(8), 2238–2263 (2016)CrossRefGoogle Scholar
  17. 17.
    Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79(3), 763–813 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Oñate, E.: Derivation of stabilized equations for numerical solution of advective–diffusive transport and fluid flow problems. Comput. Methods Appl. Mech. Eng. 151(1–2), 233–265 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oñate, E., Idelsohn, S., Zienkiewicz, O.C., Taylor, R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Numer. Methods Eng. 39(22), 3839–3866 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Oñate, E., Perazzo, F., Miquel, J.: A finite point method for elasticity problems. Comput. Struct. 79(22–25), 2151–2163 (2001)CrossRefGoogle Scholar
  21. 21.
    Ortega, E., Oñate, E., Idelsohn, S.: An improved finite point method for tridimensional potential flows. Comput. Mech. 40(6), 949–963 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Sadeghirad, A., Kani, I.M.: Modified equilibrium on line method for imposition of neumann boundary conditions in meshless collocation methods. Int. J. Numer. Methods Biomed. Eng. 25(2), 147–171 (2009)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sadeghirad, A., Mohammadi, S.: Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM). Int. J. Numer. Methods Eng. 69(1), 60–86 (2007)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shojaei, A., Boroomand, B., Mossaiby, F.: A simple meshless method for challenging engineering problems. Eng. Comput. 32(6), 1567–1600 (2015)CrossRefGoogle Scholar
  25. 25.
    Shojaei, A., Boroomand, B., Soleimanifar, E.: A meshless method for unbounded acoustic problems. J. Acoust. Soc. Am. 139(5), 2613–2623 (2016)CrossRefGoogle Scholar
  26. 26.
    Shojaei, A., Mudric, T., Zaccariotto, M., Galvanetto, U.: A coupled meshless finite point/peridynamic method for 2d dynamic fracture analysis. Int. J. Mech. Sci. 119, 419–431 (2016)CrossRefGoogle Scholar
  27. 27.
    Shu, C., Ding, H., Yeo, K.: Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 192(7), 941–954 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Tatari, M., Kamranian, M., Dehghan, M.: The finite point method for the p-Laplace equation. Comput. Mech. 48(6), 689–697 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Weaver Jr., W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley, New York (1990)Google Scholar
  30. 30.
    Wu, N.J., Chen, B.S., Tsay, T.K.: A review on the modified finite point method. Math. Probl. Eng. 2014, 1–29 (2014)MathSciNetGoogle Scholar
  31. 31.
    Zhang, X., Song, K.Z., Lu, M.W., Liu, X.: Meshless methods based on collocation with radial basis functions. Comput. Mech. 26(4), 333–343 (2000)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  1. 1.Industrial Engineering DepartmentUniversity of PadovaPaduaItaly
  2. 2.Center of Studies and Activities for Space (CISAS)-“G. Colombo”PaduaItaly
  3. 3.Department of Civil EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations