Acta Mechanica

, Volume 228, Issue 9, pp 3063–3075 | Cite as

Atomistic modeling of out-of-plane deformation of a propagating Griffith crack in graphene

  • M. A. N. Dewapriya
  • S. A. Meguid
Original Paper


Linear elastic fracture mechanics concepts have been widely used to characterize the fracture of nanoscale materials. In these concepts, pre-existing cracks in two-dimensional problems are assumed to be planar during the crack propagation. However, a perfect planar configuration of atomically thin nanostructures is not achievable in many applications due to complex interatomic interactions at the atomic scale. Formation of ripples and wrinkles has been experimentally observed in freestanding two-dimensional materials such as graphene. In this study, we employ molecular dynamics simulations to investigate the influence of out-of-plane deformation of a propagating Griffith crack. A numerical nanoscale uniaxial tensile test of a graphene sheet with a central crack is conducted. Two main aspects of the study are considered. The first is devoted to examining the influence of the crack orientation and the out-of-plane deformation of the crack surfaces on the crack-tip stress field. The second is concerned with the influence of the out-of-plane deformation on the fracture resistance of graphene. The analysis of the crack-tip stress field reveals a remarkably high transverse compressive stress at the crack surfaces, which induces the out-of-plane deformation. Moreover, our results reveal that in the absence of the crack out-of-plane deformation, the fracture resistance of graphene approaches the value given by Griffith’s criterion at a relatively smaller crack length as compared to the case involving out-of-plane deformation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors wish to thank NSERC and the Discovery Accelerator Supplement for their kind support of this research. Computing resources were provided by WestGrid and Compute/Calcul Canada.


  1. 1.
    Chen, C.Y., Lee, S., Deshpande, V.V., Lee, G.H., Lekas, M., Shepard, K., Hone, J.: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923–927 (2013). doi: 10.1038/nnano.2013.232 CrossRefGoogle Scholar
  2. 2.
    Chen, C., Rosenblatt, S., Bolotin, K.I., Kalb, W., Kim, P., Kymissis, I., Stormer, H.L., Heinz, T.F., Hone, J.: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861–867 (2009). doi: 10.1038/nnano.2009.267 CrossRefGoogle Scholar
  3. 3.
    Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007). doi: 10.1126/science.1136836 CrossRefGoogle Scholar
  4. 4.
    Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  5. 5.
    Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P.: 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010). doi: 10.1126/science.1184289 CrossRefGoogle Scholar
  6. 6.
    Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017). doi: 10.1016/j.carbon.2017.03.013 CrossRefGoogle Scholar
  7. 7.
    Banhart, F., Kotakoski, J., Krasheninnikov, A.V.: Structural Defects in Graphene. ACS Nano 5, 26–41 (2011). doi: 10.1021/nn102598m CrossRefGoogle Scholar
  8. 8.
    Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Lombardo, A., Kulmala, T.S., Ferrari, A.C.: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011). doi: 10.1021/nl201432g CrossRefGoogle Scholar
  9. 9.
    Eckmann, A., Felten, A., Mishchenko, A., Britnell, L., Krupke, R., Novoselov, K.S., Casiraghi, C.: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925–3930 (2012). doi: 10.1021/nl300901a CrossRefGoogle Scholar
  10. 10.
    Annett, J., Cross, G.L.W.: Self-assembly of graphene ribbons by spontaneous self-tearing and peeling from a substrate. Nature 535, 271–275 (2016). doi: 10.1038/nature18304 CrossRefGoogle Scholar
  11. 11.
    Jung, G., Qin, Z., Buehler, M.J.: Molecular mechanics of polycrystalline graphene with enhanced fracture toughness. Extreme Mech. Lett. 2, 52–59 (2015). doi: 10.1016/j.eml.2015.01.007 CrossRefGoogle Scholar
  12. 12.
    Zhang, T., Li, X., Gao, H.: Designing graphene structures with controlled distributions of topological defects: a case study of toughness enhancement in graphene ruga. Extreme Mech. Lett. 1, 3–8 (2014). doi: 10.1016/j.eml.2014.12.007 CrossRefGoogle Scholar
  13. 13.
    Meng, F., Chen, C., Song, J.: Dislocation shielding of a nanocrack in graphene: atomistic simulations and continuum modeling. J. Phys. Chem. Lett. 6, 4038–4042 (2015). doi: 10.1021/acs.jpclett.5b01815 CrossRefGoogle Scholar
  14. 14.
    Meng, F., Chen, C., Song, J.: Lattice trapping and crack decohesion in graphene. Carbon 116, 33–39 (2017). doi: 10.1016/j.carbon.2017.01.091 CrossRefGoogle Scholar
  15. 15.
    Zhang, T., Li, X., Gao, H.: Fracture of graphene: a review. Int. J. Fract. 1–31 (2015). doi: 10.1007/s10704-015-0039-9
  16. 16.
    Sandoz-Rosado, E., Beaudet, T.D., Balu, R., Wetzel, E.D.: Designing molecular structure to achieve ductile fracture behavior in a stiff and strong 2D polymer, "graphylene". Nanoscale 8, 10947–10955 (2016). doi: 10.1039/C5NR07742G CrossRefGoogle Scholar
  17. 17.
    Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects. J. Appl. Mech. 81, 081010 (2014). doi: 10.1115/1.4027681 CrossRefGoogle Scholar
  18. 18.
    Dewapriya, M.A.N., Rajapakse, R.K.N.D., Nigam, N.: Influence of hydrogen functionalization on the fracture strength of graphene and the interfacial properties of graphene-polymer nanocomposite. Carbon 1, 6991–7000 (2015). doi: 10.1103/PhysRevB.37.6991 Google Scholar
  19. 19.
    Rajasekaran, G., Parashar, A.: Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects. Diam. Relat. Mater. 74, 90–99 (2017). doi: 10.1016/j.diamond.2017.02.015 CrossRefGoogle Scholar
  20. 20.
    Deng, S., Berry, V.: Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016). doi: 10.1016/j.mattod.2015.10.002 CrossRefGoogle Scholar
  21. 21.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., Roth, S.: The structure of suspended graphene sheets. Nature 446, 60–63 (2007). doi: 10.1038/nature05545 CrossRefGoogle Scholar
  22. 22.
    Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A., McEuen, P.L.: Graphene kirigami. Nature 524, 204–207 (2015). doi: 10.1038/nature14588 CrossRefGoogle Scholar
  23. 23.
    Song, Z., Artyukhov, V.I., Wu, J., Yakobson, B.I., Xu, Z.: Defect-detriment to graphene strength is concealed by local probe: the topological and geometrical effects. ACS Nano 9, 401–408 (2015). doi: 10.1021/nn505510r CrossRefGoogle Scholar
  24. 24.
    Zhang, T., Li, X., Gao, H.: Defects controlled wrinkling and topological design in graphene. J. Mech. Phys. Solids 67, 2–13 (2014). doi: 10.1016/j.jmps.2014.02.005 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yin, H., Qi, H.J., Fan, F., Zhu, T., Wang, B., Wei, Y.: Griffith criterion for brittle fracture in graphene. Nano Lett. 15, 1918–1924 (2015). doi: 10.1021/nl5047686 CrossRefGoogle Scholar
  26. 26.
    Dewapriya, M.A.N., Rajapakse, R.K.N.D., Phani, A.S.: Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 187, 199–212 (2014). doi: 10.1007/s10704-014-9931-y CrossRefGoogle Scholar
  27. 27.
    Zhang, T., Li, X., Kadkhodaei, S., Gao, H.: Flaw insensitive fracture in nanocrystalline graphene. Nano Lett. 12, 4605–4610 (2012). doi: 10.1021/nl301908b CrossRefGoogle Scholar
  28. 28.
    Song, Z., Ni, Y., Xu, Z.: Geometrical distortion leads to Griffith strength reduction in graphene membranes. Extreme Mech. Lett. (2017). doi: 10.1016/j.eml.2017.01.005 Google Scholar
  29. 29.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). doi: 10.1006/jcph.1995.1039 CrossRefzbMATHGoogle Scholar
  30. 30.
    Mattoni, A., Colombo, L., Cleri, F.: Atomic scale origin of crack resistance in brittle fracture. Phys. Rev. Lett. 95, 115501 (2005). doi: 10.1103/PhysRevLett.95.115501 CrossRefGoogle Scholar
  31. 31.
    Cleri, F., Phillpot, S.R., Wolf, D., Yip, S.: Atomistic simulations of materials fracture and the link between atomic and continuum length scales. J. Am. Ceram. Soc. 81, 501–516 (1998). doi: 10.1111/j.1151-2916.1998.tb02368.x CrossRefGoogle Scholar
  32. 32.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472 (2000). doi: 10.1063/1.481208 CrossRefGoogle Scholar
  33. 33.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B. 42, 9458–9471 (1990). doi: 10.1103/PhysRevB.42.9458 CrossRefGoogle Scholar
  34. 34.
    Dewapriya, M.A.N., Rajapakse, R.K.N.D.: Development of a homogenous nonlinear spring model characterizing the interfacial adhesion properties of graphene with surface defects. Compos. Part B Eng. 98, 339–349 (2016). doi: 10.1016/j.compositesb.2016.04.052 CrossRefGoogle Scholar
  35. 35.
    Shenderova, O.A., Brenner, D.W., Omeltchenko, A., Su, X., Yang, L.H.: Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B. 61, 3877–3888 (2000). doi: 10.1103/PhysRevB.61.3877 CrossRefGoogle Scholar
  36. 36.
    Dilrukshi, K.G.S., Dewapriya, M.A.N., Puswewala, U.G.A.: Size dependency and potential field influence on deriving mechanical properties of carbon nanotubes using molecular dynamics. Theor. Appl. Mech. Lett. 5, 167–172 (2015). doi: 10.1016/j.taml.2015.05.005 CrossRefGoogle Scholar
  37. 37.
    Jhon, Y.I., Jhon, Y.M., Yeom, G.Y., Jhon, M.S.: Orientation dependence of the fracture behavior of graphene. Carbon 66, 619–628 (2014). doi: 10.1016/j.carbon.2013.09.051 CrossRefGoogle Scholar
  38. 38.
    Zhang, B., Mei, L., Xiao, H.: Nanofracture in graphene under complex mechanical stresses. Appl. Phys. Lett. 101, 121915 (2012). doi: 10.1063/1.4754115 CrossRefGoogle Scholar
  39. 39.
    Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  40. 40.
    Tsai, D.H.: The virial theorem and stress calculation in molecular dynamics. J. Chem. Phys. 70, 1375–1382 (1979). doi: 10.1063/1.437577 CrossRefGoogle Scholar
  41. 41.
    Ohta, T.: Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006). doi: 10.1126/science.1130681 CrossRefGoogle Scholar
  42. 42.
    Alian, A.R., Dewapriya, M.A.N., Meguid, S.A.: Molecular dynamics study of the reinforcement effect of graphene in multilayered polymer nanocomposites. Mater. Des. 124, 47–57 (2017). doi: 10.1016/j.matdes.2017.03.052 CrossRefGoogle Scholar
  43. 43.
    Dewapriya, M.A.N., Phani, A.S., Rajapakse, R.K.N.D.: Influence of temperature and free edges on the mechanical properties of graphene. Model. Simul. Mater. Sci. Eng. 21, 065017 (2013)CrossRefGoogle Scholar
  44. 44.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). doi: 10.1126/science.1157996 CrossRefGoogle Scholar
  45. 45.
    Liu, F., Ming, P., Li, J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B. 76, 064120 (2007). doi: 10.1103/PhysRevB.76.064120 CrossRefGoogle Scholar
  46. 46.
    Wei, Y., Wu, J., Yin, H., Shi, X., Yang, R., Dresselhaus, M.: The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat. Mater. 11, 759–763 (2012)CrossRefGoogle Scholar
  47. 47.
    Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P.E., Liu, Z., Gong, Y., Zhang, J., Zhang, X. et al.: Fracture toughness of graphene. Nat. Commun. 5 (2014). doi: 10.1038/ncomms4782
  48. 48.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character. 221, 163–198 (1921). doi: 10.1098/rsta.1921.0006 CrossRefGoogle Scholar
  49. 49.
    Lu, Q., Huang, R.: Excess energy and deformation along free edges of graphene nanoribbons. Phys. Rev. B. 81, 155410 (2010). doi: 10.1103/PhysRevB.81.155410 CrossRefGoogle Scholar
  50. 50.
    Meguid, S.A.: Engineering fracture mechanics. Elsevier Applied Science; Sole Distributor in the USA and Canada, Elsevier Science Pub, London (1989)Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Mechanics and Aerospace Design Laboratory, Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations