Acta Mechanica

, Volume 228, Issue 10, pp 3483–3495 | Cite as

Effect of nanoscale twin and dislocation pileup at twin boundary on crack blunting in nanocrystalline materials

  • H. B. Zhao
  • H. Feng
  • F. Liu
  • Y. W. Liu
  • P. H. Wen
Original Paper


A theoretical model is developed to investigate the effects of the nanoscale twin and the dislocation pileup at the twin boundary on crack blunting in nanocrystalline materials. In the model, the nanoscale twin as a stress source approximately equals a quadrupole of wedge disclination. Using the complex variable method, the complex form expressions of the stress field and the force field are derived. The critical stress intensity factors (SIFs) for the first dislocation emission from the crack tip are calculated. The effects of the dislocation pileup, disclination strength, twin size, twin orientation, twin position and crack length on the critical SIFs are discussed in detail. Moreover, the shielding/anti-shielding effect produced by the twin, the dislocation pileup at the twin boundary and the first dislocation emitted on the crack tip is discussed. The results show that both the twin and the dislocation pileup at the twin boundary would suppress the dislocation emission from the crack tip. The suppressive effect induced by the dislocation pileup at the twin boundary is much stronger that that by the twin. Meanwhile, the emission angle has a significant effect on the mode I shielding/anti-shielding effect on the crack tip a.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aifantis, E.C.: Deformation and failure of bulk nanograined and UFG materials. Mater. Sci. Eng. A 503(1–2), 190–197 (2009)CrossRefGoogle Scholar
  2. 2.
    Barai, p, Weng, G.J.: Mechanics of very fine-grained nanocrystalline materials with contributions from grain interior, GB zone, and grain boundary sliding. Int. J. Plast. 25(12), 2410–2434 (2009)CrossRefGoogle Scholar
  3. 3.
    Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A.: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scr. Mater. 60(1), 36–39 (2009)CrossRefGoogle Scholar
  4. 4.
    Koch, C.C.: Structural nanocrystalline materials: an overview. J. Mater. Sci. 42(5), 1403–1414 (2007)CrossRefGoogle Scholar
  5. 5.
    Ovid’ko, I.A., Sheinerman, A.G.: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90(17), 171927 (2007)CrossRefGoogle Scholar
  6. 6.
    Kolesnikova, A.L., Ovid’ko, I.A., Fedorov, A.A.: Local migration of grain boundaries in polycrystalline materials under plastic deformation conditions. Tech. Phys. Lett. 29(6), 488–490 (2003)CrossRefGoogle Scholar
  7. 7.
    Vergazov, A.N., Likhachev, V.A., Rybin, V.V., Solomko, YuV: Fragmented structure peculiarities in molybdenum alloys with different mechanical properties. Fiz. Met. Metalloved. 43(1), 70–75 (1977)Google Scholar
  8. 8.
    Rybin, V.V.: High plastic strains and fracture of metals. Metallurgiya, Moscow (1986)Google Scholar
  9. 9.
    Bobylev, S.V., Mukherjee, A.K., Ovid’ko, I.A., Sheinerman, A.G.: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26(11), 1629–1644 (2010)CrossRefMATHGoogle Scholar
  10. 10.
    Ovid’ko, I.A., Sheinerman, A.G.: Deformation twinning through nanoscale ideal shears in nano-and polycrystalline materials at ultra high stresses. Rev. Adv. Mater. Sci. 27(2), 189–194 (2011)Google Scholar
  11. 11.
    Zhang, T.Y., Li, J.C.M.: Interaction of an edge dislocation with an interfacial crack. J. Appl. Phys. 72(6), 2215–2226 (1992)CrossRefGoogle Scholar
  12. 12.
    Doiphode, R.L., Murty, S.V.S.N., Prabhu, N., Kashyap, B.P.: Grain growth in caliber rolled Mg-3Al-1Zn alloy and its effect on hardness. J. Magnes. Alloys 3(4), 322–329 (2015)CrossRefGoogle Scholar
  13. 13.
    Jiang, L., Bi, G., Wang, G., Jiang, Q., Lian, J., Jiang, Z.: Strain-hardening and warm deformation behaviors of extruded Mg–Sn–Yb alloy sheet. J. Magnes. Alloys 2(2), 116–123 (2014)CrossRefGoogle Scholar
  14. 14.
    Singarapu, U., Adepu, K., Arumalle, S.R.: Influence of tool material and rotational speed on mechanical properties of friction stir welded AZ31B magnesium alloy. J. Magnes. Alloys 3(4), 335–344 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhang, R.Y., Daymond, M.R., Holt, R.A.: A finite element model of deformation twinning in zirconium. Mater. Sci. Eng. A 473(1–2), 139–146 (2008)CrossRefGoogle Scholar
  16. 16.
    Romanov, A.E., Vladimirov, V.I.: Disclinations in crystalline solids. In: Nabarro, F.R.N. (ed.) Dislocations in Solids, vol. 9, pp. 191–402. North-Holland, Amesterdam (1992)Google Scholar
  17. 17.
    Feng, H., Fang, Q.H., Liu, B., Liu, Y., Liu, Y.W., Wen, P.H.: Nucleation and growth mechanisms of nanoscale deformation twins in hexagonal-close-packed metal magnesium. Mech. Mater. 109, 26–33 (2017)CrossRefGoogle Scholar
  18. 18.
    Hirth, J.P., Lorth, J.: Theory of Dislocations, 2nd edn. John-wiley, New York (1964)Google Scholar
  19. 19.
    Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., Suresh, S.: Nano-sized twins induce high rate sensitivity of flow stress pure copper. Acta Mater. 53(7), 2169–2179 (2005)CrossRefGoogle Scholar
  20. 20.
    Lu, L., Dao, M., Zhu, T., Li, J.: Size dependence of rate-controlling deformation mechanisms in nanotwinned copper. Scr. Mater. 60(12), 1062–1066 (2009)CrossRefGoogle Scholar
  21. 21.
    Lu, L., You, Z.S., Lu, K.: Work hardening of polycrystalline Cu with nanoscale twins. Scr. Mater. 66(11), 837–842 (2012)CrossRefGoogle Scholar
  22. 22.
    Muskhelishvili, N.L., Radok, J.R.M.: Some Basic Problems of the Mathematical Theory of Elasticity: Fundamental Equations, Plane Theory of Elasticity, Torsion and Bending. Noordhoof, Groningen (1953)Google Scholar
  23. 23.
    Gutkin, M.Y., Ovid’ko, I.A., Skiba, N.V.: Crack-stimulated generation of deformation twins in nanocrystalline metals and ceramics. Philos. Mag. 88(8), 1137–1151 (2008)CrossRefGoogle Scholar
  24. 24.
    Ovid’ko, I.A.: Review on fracture processes in nanocrystalline materials. J. Mater. Sci. 42(5), 1694–1708 (2007)CrossRefGoogle Scholar
  25. 25.
    Feng, H., Fang, Q.H., Liu, Y.W., Chen, C.P.: Nanoscale rotational deformation effect on dislocation emission from an elliptically blunted crack tip in nanocrystalline materials. Int. J. Solids Struct. 51(2), 352–358 (2014)CrossRefGoogle Scholar
  26. 26.
    Fang, Q.H., Feng, H., Liu, Y.W., Lin, S., Zhang, N.: Special rotational deformation effect on the emission of dislocations from a crack tip in deformed nanocrystalline solids. Int. J. Solids Struct. 49(11–12), 1406–1412 (2012)CrossRefGoogle Scholar
  27. 27.
    Fang, Q.H., Liu, Y.W., Jang, C.P.: Edge dislocation interacting with an interfacial crack along a circular inhomogeneity. Int. J. Solids Struct. 40(21), 5781–5797 (2003)CrossRefMATHGoogle Scholar
  28. 28.
    Ovid’ko, I.A., Sheinerman, A.G., Alfantis, E.C.: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59(12), 5023–5031 (2011)CrossRefGoogle Scholar
  29. 29.
    Zhang, S., Zhou, J.Q., Wang, L., Liu, H.X., Dong, S.H.: Crack nucleation due to dislocation pile-ups at twin boundary-grain boundary intersections. Mater. Sci. Eng. A 632, 78–81 (2015)CrossRefGoogle Scholar
  30. 30.
    Muskhelishvili, N.L.: Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975)MATHGoogle Scholar
  31. 31.
    Fang, Q.H., Liu, Y.W., Jin, B., Wen, P.H.: Effect of interface stressed on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion. Int. J. Solids Struct. 46(6), 1413–1422 (2009)CrossRefMATHGoogle Scholar
  32. 32.
    Feng, H., Fang, Q.H., Zhang, L.C., Liu, Y.W.: Effect of cooperative grain boundary sliding and migration on emission of dislocations from a crack tip in nanocrystalline materials. Mech. Mater. 61, 39–48 (2013)Google Scholar
  33. 33.
    Asaro, R.J., Suresh, S.: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53(12), 4825–4838 (2005)CrossRefGoogle Scholar
  34. 34.
    Zhu, B., Asaro, J.R., Krysl, P., Bailey, R.: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53(18), 4825–4838 (2005)CrossRefGoogle Scholar
  35. 35.
    Neuber, H.: Theory of Notch Stresses. Springer, Berlin (1958)Google Scholar
  36. 36.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  37. 37.
    Rice, J.R., Thomson, R.: Ductile versus brittle behavior of crystals. Philos. Mag. 29(1), 73–79Google Scholar
  38. 38.
    Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., Aifantis, E.C.: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58(8), 1088–1099 (2010)Google Scholar
  39. 39.
    Huang, M.X., Li, Z.H.: Dislocation emission criterion from a blunt crack tip. J. Mech. Phys. Solids 52(9), 1991–2003 (2004)CrossRefMATHGoogle Scholar
  40. 40.
    Fang, Q.H., Liu, Y.W., Jiang, C.P., Li, B.: Interaction of a wedge disclination dipole with interfacial cracks. Eng. Fract. Mech. 73(9), 1235–1248 (2006)CrossRefGoogle Scholar
  41. 41.
    Zhang, T.Y., Li, J.C.M.: Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 39(11), 2739–2744 (1991)CrossRefGoogle Scholar
  42. 42.
    Demkowicz, M.J., Argon, A.S., Farkas, D., Frary, M.: Simulation of plasticity in nanocrystalline silicon. Philos. Mag. 87(28), 4253–4271 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacturing for Vehicle BodyHunan UniversityChangshaChina
  2. 2.State Key Laboratory of Power MetallurgyCentral South UniversityChangshaChina
  3. 3.School of Engineering and Material Science, Queen MaryUniversity of LondonLondonUK

Personalised recommendations