Acta Mechanica

, Volume 228, Issue 6, pp 2299–2346 | Cite as

Description of nonlinear thermal effects by means of a two-component Cosserat continuum

  • E. A. IvanovaEmail author
Original Paper


A physical object under consideration is a conventional material that has elastic and thermodynamic properties. To describe thermal processes in the material, we use a mechanical model different from the models that are usually used in the kinetic theory and statistical physics. Our method of thermal processes modeling is based on an idea to introduce a continuum with an internal structure and to consider mechanical quantities associated with the additional degrees of freedom as analogies of thermodynamic quantities. In this way, we suggest mechanical interpretations of temperature and entropy, which can be a foundation for the description of thermal processes within the framework of continuum mechanics and by using the methods of continuum mechanics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kondepudi, D., Prigogine, I.: Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, Chichester (1998)zbMATHGoogle Scholar
  2. 2.
    Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas Publishers, Springfield (1955)zbMATHGoogle Scholar
  3. 3.
    De Groot, S.R.: Thermodynamics of Irreversible Processes. North Holland, Amsterdam (1951)zbMATHGoogle Scholar
  4. 4.
    Gyarmati, I.: Introduction to Irreversible Thermodynamics. MTI, Budapest (1960)Google Scholar
  5. 5.
    Bachareva, I.F.: Nonlinear irreversible thermodynamics. Saratov University Press, Saratov (1976) (in Russian)Google Scholar
  6. 6.
    Ziegler, H.: Some extremum principles in irreversible thermodynamics. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 91–193. North-Holland, Amsterdam (1963)Google Scholar
  7. 7.
    Jou, D., Casas-Vazquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1965)zbMATHGoogle Scholar
  9. 9.
    Truesdell, C.: A First Course in Rational Continuum Mechanics. The John Hopkins University, Baltimore (1972)Google Scholar
  10. 10.
    Palmov, V.A.: Vibrations of Elastoplastic Bodies. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kovalenko, A.D.: Thermoelasticity. Naukova Dumka, Kiev (1975). (in Russian)Google Scholar
  12. 12.
    Kuvyrkin, G.N.: Thermomechanics of solids under high-intensity loading. MSTU Publishing House, Moscow (1993) (in Russian)Google Scholar
  13. 13.
    Zarubin, V.S., Kuvyrkin, G.N.: Mathematical Models of Thermomechanics. Fizmatlit, Moscow (2002). (in Russian)Google Scholar
  14. 14.
    Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)Google Scholar
  15. 15.
    Zhilin, P.A.: Applied Mechanics. Foundations of Shells Theory. Tutorial Book. Politechnic University Publishing House, St. Petersburg (2006). (in Russian)Google Scholar
  16. 16.
    Zhilin, P.A.: Applied Mechanics. The Theory of Thin Elastic Rods. Polytechnic University Publishing House, St. Petersburg (2007). (in Russian)Google Scholar
  17. 17.
    Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (in Russian)Google Scholar
  18. 18.
    Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoof International, Leyden (1976)zbMATHGoogle Scholar
  19. 19.
    Sedov, L.I.: Continuum Mechanics, vol. 1. Nauka, Moscow (1970). (in Russian)Google Scholar
  20. 20.
    Kupradze, V.D. (ed.): Three-Dimensional Problems of the Theory of Elasticity. Nauka, Moscow (1976). (in Russian)Google Scholar
  21. 21.
    Pobedrya, B.E., Georgievskii, D.V.: Fundamentals of Continuum Mechanics. Fizmatlit, Moscow (2006). (in Russian)Google Scholar
  22. 22.
    Müller, I., Müller, W.H.: Fundamentals of Thermodynamics and Applications: With Historical Annotations and Many Citations from Avogadro to Zermelo. Springer, Berlin (2009)zbMATHGoogle Scholar
  23. 23.
    Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    Germain, P., Nguyen, Q.S., Suquet, P.: Continuum thermodynamics. J. Appl. Mech. Trans. ASME 50, 1010–1020 (1983)CrossRefzbMATHGoogle Scholar
  25. 25.
    Truesdell, C.: Rational Thermodynamics. Springer, New Vork (1984)CrossRefzbMATHGoogle Scholar
  26. 26.
    Müller, I., Weiss, W.: Entropy and Energy: A Universal Competition. Springer, Berlin (2005)zbMATHGoogle Scholar
  27. 27.
    Kuzkin, V.A., Krivtsov, A.M., Jones, R.E., Zimmerman, J.A.: Material frame representation of equivalent stress tensor for discrete solids. Phys. Mesomech. 18, 13–23 (2015)CrossRefGoogle Scholar
  28. 28.
    Maxwell, J.C.: Illustrations of the dynamical theory of gases. In: Niven, W.D. (ed.) The Scientific Papers of James Clerk Maxwell, vol. 1. Dover Publications, New York (1860)Google Scholar
  29. 29.
    Warner Jr., H.R.: Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem. Fund. 11, 379–387 (1972)CrossRefGoogle Scholar
  30. 30.
    Giesekus, H.: Constitutive equations for polymer fluids based on the concept of configuration-dependent molecular mobility: a generalized mean-configuration model. J. Non-Newton. Fluid Mech. 17, 349–372 (1985)CrossRefGoogle Scholar
  31. 31.
    Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids. Fluid Mechanics, vol. 1. Wiley, New York (1987)Google Scholar
  32. 32.
    Jehring, L.: Kinetic theory of a gas with internal degrees of freedom. J. Appl. Math. Mech. 64, 529–536 (1984)zbMATHGoogle Scholar
  33. 33.
    Rosenberger, F.: Die Geschichte der Physik. Dritter Teil. Geschichte der Physik in den letzten hundert Jahren. Fr. Vieweg und Sohn, Braunschweig (1887)Google Scholar
  34. 34.
    Whittaker, E.: A History of the Theories of Aether and Electricity. The Classical Theories. Thomas Nelson and Sons Ltd, London (1910)zbMATHGoogle Scholar
  35. 35.
    Gliozzi, M.: Storia della fisica. Storia delle scienze, vol. 2. UTET, Torino (1965)Google Scholar
  36. 36.
    Müller, I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, Berlin (2007)zbMATHGoogle Scholar
  37. 37.
    Grad, H.: Principles of the kinetic theory of gases. In: Flügge, V. (ed.) Handbuch der Physik, vol. XII, pp. 205–294. Springer, Berlin (1958)Google Scholar
  38. 38.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  39. 39.
    Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, New York (1975)zbMATHGoogle Scholar
  40. 40.
    Kremer, G.M.: An introduction to the Boltzmann equation and transport processes in gases. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  41. 41.
    Euler, L.: Dissertatio de igne, in qua eius natura et proprietates explicantur. Opera Omnia: Series 3, vol.10 (1738)Google Scholar
  42. 42.
    Predvoditelev, A.S., Spasskiy, B.I. (eds.).: The development of physics in Russia (collection of articles), vol. 1. Publishing House “Prosvyaschenie”. Moscow (1970) (in Russian)Google Scholar
  43. 43.
    Barabanov, N.N.: Leonhard Euler and his contribution to the development of physics: the 300-th anniversary of the scientist. Physics N 5, 829, 40–44 (2007) (in Russian)Google Scholar
  44. 44.
    Lomonosov, M.V.: Complete works in 10 volumes, vol. 2. Works on physics and chemistry. 1747–1752 years. Publishing House of the Academy of Sciences of USSR. Moscow–Leningrad (1951) (in Russian)Google Scholar
  45. 45.
    Thompson, B.: Philosophical Transactions, LXXI, (1781); Philosophical Transactions, LXXXVIII (1798)Google Scholar
  46. 46.
    Davy, H.: Elements of chemical philosophy, London, p. 93 and next (1812)Google Scholar
  47. 47.
    Young, T.: Lectures on natural philosophy. London I, 651–657 (1807)Google Scholar
  48. 48.
    Cauchy, A.L.: Met. De l’Acad. XVIII, 1839 (published in 1842), p. 153Google Scholar
  49. 49.
    Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mech. 215, 261–286 (2010)CrossRefzbMATHGoogle Scholar
  50. 50.
    Ivanova, E.A.: On one model of generalized continuum and its thermodynamical interpretation. In: Altenbach, H., Maugin, G.A., Erofeev, V. (eds.) Mechanics of Generalized Continua, pp. 151–174. Springer, Berlin (2011)CrossRefGoogle Scholar
  51. 51.
    Ivanova, E.A.: Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Tech. Mech. 32, 273–286 (2012)Google Scholar
  52. 52.
    Ivanova, E.A.: Description of mechanism of thermal conduction and internal damping by means of two component Cosserat continuum. Acta Mech. 225, 757–795 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Contin. Mech. Thermodyn. 28, 1759–1780 (2016)Google Scholar
  54. 54.
    Lord Kelvin (Sir William Thomson). On vortex atoms. Hermann: Proceedings of the Royal Society of Edinburgh, vol. VI, pp. 94–105 (1867). Reprinted in Philos. Mag. vol. XXXIV, pp. 15–24 (1867)Google Scholar
  55. 55.
    Zhilin, P.A.: Mechanics of deformable directed surfaces. Int. J. Solids Struct. 12, 635–648 (1976)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Altenbach, H., Naumenko, K., Zhilin, P.A.: A note on transversely-isotropic invariants. Z. Angew. Math. Mech. 86, 162–168 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Shashkov, A.G., Bubnov, V.A., Yanovsky, S. Yu.: Wave phenomena of heat conductivity. Publishing House “Editorial URSS”. Moscow (2004) (in Russian)Google Scholar
  58. 58.
    Ivanova, E.A., Vilchevskaya, E.N., Müller, W.H.: Time derivatives in material and spatial description–what are the differences and why do they concern us? In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures. Springer, Berlin (2016)Google Scholar
  59. 59.
    Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Contin. Mech. Thermodyn. 15, 539–570 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Batchelor, G.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  61. 61.
    Loitsyansky, L.G.: Fluid Mechanics. Nauka, Moscow (1987)Google Scholar
  62. 62.
    Daily, J., Harleman, D.: Fluid Dynamics. Addison-Wesley, Massachusetts (1966)zbMATHGoogle Scholar
  63. 63.
    Ivanova, E.A.: A new model of a micropolar continuum and some electromagnetic analogies. Acta Mech. 226, 697–721 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Zhilin, P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 169–193 (2000)CrossRefzbMATHGoogle Scholar
  65. 65.
    Campo, A.: Estimate of the transient conduction of heat in materials with linear thermal properties based on the solution for constant properties. Heat Mass Transf. 17, 1–9 (1982)Google Scholar
  66. 66.
    Jordan, A., Khaldi, S., Benmouna, M., Borucki, A.: Study of non-linear heat transfer problems. Revue de Physique Appliquee. 22, 101–105 (1987)CrossRefGoogle Scholar
  67. 67.
    Polyanin, A.D., Zhurov, A.I., Vyaz’min, A.V.: Exact solutions of nonlinear heat- and mass-transfer equations. Theor. Found. Chem. Eng. 34, 403–415 (2000)CrossRefGoogle Scholar
  68. 68.
    Ebadian, A., Darania, P.: Study of exact solutions of nonlinear heat equations. Comput. Appl. Math. 27, 107–121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Habibi, M., Oloumi, M., Hosseinkhani, H., Magidi, S.: Numerical investigation into the highly nonlinear heat transfer equation with bremsstrahlung emission in the inertial confinement fusion plasmas. Contrib. Plasma Phys. 55, 677–684 (2015)CrossRefGoogle Scholar
  70. 70.
    Fong, E., Lam, T.T., Davis, S.E.: Nonlinear heat conduction in isotropic and orthotropic materials with laser heat source. J. Thermophys. Heat Transf. 24, 104–111 (2010)CrossRefGoogle Scholar
  71. 71.
    Grudinin, I., Lee, H., Chen, T., Vahala, K.: Compensation of thermal nonlinearity effect in optical resonators. Opt. Express 19, 7365–7372 (2011)CrossRefGoogle Scholar
  72. 72.
    Chaibi, M., Fernández, T., Mimouni, A., Rodriguez-Tellez, J., Tazón, A., Mediavilla, A.: Nonlinear modeling of trapping and thermal effects on GaAs and GaN MESFET/HEMT devices. Progr. Electromagn. Res. 124, 163–186 (2012)CrossRefGoogle Scholar
  73. 73.
    Huang, C., Fan, J., Zhu, L.: Dynamic nonlinear thermal optical effects in coupled ring resonators. AIP Adv. 2, 1–8 (2012)Google Scholar
  74. 74.
    Markides, C.N., Osuolale, A., Solanki, R., Stan, G.-B.V.: Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Appl. Energy 104, 958–977 (2013)CrossRefGoogle Scholar
  75. 75.
    Mottaghy, D., Rath, V.: Latent heat effects in subsurface heat transport modeling and their impact on palaeotemperature reconstructions. Geophys. J. Int. 164, 236–245 (2006)CrossRefGoogle Scholar
  76. 76.
    LeMesurier, B.: Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete Contin. Dyn. Syst. Ser. S 1, 317–327 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Khandekar, C., Pick, A., Johnson, S.G., Rodriguez, A.W.: Radiative heat transfer in nonlinear Kerr media. Phys. Rev. B 91, 1–9 (2015)CrossRefGoogle Scholar
  78. 78.
    Ananth, P., Dinesh, A., Sugunamma, V., Sandeep, N.: Effect of nonlinear thermal radiation on stagnation flow of a Casson fluid towards a stretching sheet. Ind. Eng. Lett. 5, 70–79 (2015)Google Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Department of Theoretical MechanicsPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Institute for Problems in Mechanical Engineering of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations