Acta Mechanica

, Volume 228, Issue 7, pp 2413–2427 | Cite as

CFD simulation of multiphase (liquid–solid–gas) flow in an airlift column photobioreactor

  • Fernando Calvo
  • Antonio BulaEmail author
  • Leonardo Di Mare
  • Samira Garcia
Original Paper


A 2D computational fluid dynamics simulation was carried out using a multiphase flow model with an Eulerian–Eulerian approach for a microalgae culture in an airlift column photobioreactor. Simulation was performed for a \(0.0625\,l/l_{\mathrm{culture}}\cdot \hbox {min}\) inlet airflow. Air, water and microalgae velocity contours showed less gas phase present in the downcomer than in the riser, suggesting the necessity of vigorous mixing in the ascendant portion if homogeneous water and solid flow is to be achieved. Air velocity is smaller in the downcomer (shorter velocity vectors) than in the riser. Water velocity vectors point always in the expected direction, down in the downcomer and up in the riser. Microalgae paths, perhaps due to the small size of the microorganisms, follow the water velocity vectors. As there are fewer hydraulic restrictions to the liquid phase in the riser, a large amount of energy is dissipated by gas–liquid interactions. In the downcomer region, the gas phase is almost nonexistent, and bubble collisions are almost nonexistent as well. A quasi-stagnation zone was found at the lower section of the downcomer, showing that the design requires improvement. Finally, the turbulent kinetic energy is larger at the top and middle region of the riser; meanwhile, it is lower at the downcomer. Similar results were observed for the energy dissipation rate.

List of symbols


Bubble diameter


Microalgae diameter



\(\mathbf{M}_{\mathrm{I},\alpha }\)

Momentum force at the interphase for \(\alpha \) phase

\(P_{\alpha }\)

Turbulent kinetic energy production term


Turbulent Prandtl number


Volume fraction




Phase velocity

Greek symbols

\(\alpha \)

Phase (liquid/gas/solid)

\(\varepsilon \)

Turbulence energy dissipation rate


Turbulence kinetic energy

\(\rho \)


\(\nabla P\)

Pressure gradient

\(\mu \)


\(\mu _{\mathrm{g,l}}\)

Bubble-induced liquid viscosity

\(\mu _{\mathrm{s,l}}\)

Solid-particle-induced liquid viscosity

\(\mu _{\mathrm{t}}\)

Turbulent viscosity

\(\Gamma _{\alpha } \)

Dispersion Coefficient


\(\hbox {l}\)

Liquid phase

\(\hbox {g}\)

Gas phase

\(\hbox {s}\)

Solid phase

\(\hbox {eff}\)



Interphase force






Virtual mass


Turbulent dispersion


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This paper is the result of the research project Implementation of R & D (Microalgae components) to promote development and technology transfer in the agroindustrial production in Departamento del Atlántico, which is funded by Departamento del Atlántico through resources from Sistema General de Regalías–Fondo de Ciencia, Tecnología e Innovación (Grant no. FOESPC 52603 PR0004 Algas).


  1. 1.
    Benavente-Valdés, J., Montañez, J., Aguilar, C., Méndez-Zavala, A., Yaldivia, B.: Tecnología de cultivo de microalgas en fotobiorreactores. Revista Científica de la Universidad Autónoma de Coahuila. 7(4), 1–12 (2012)Google Scholar
  2. 2.
    Bitog, J., Lee, I., Lee, C., Kim, K., Hwang, H., Hong, S.: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput. Electron. Agric. 76(2), 131–147 (2011)CrossRefGoogle Scholar
  3. 3.
    Pulz, O.: Photobioreactors: production systems for phototrophic microorganisms. Appl. Microbiol. Biotechnol. 57(3), 287–293 (2001)CrossRefGoogle Scholar
  4. 4.
    Xu, L., Rui, L., Feng, W., Chun-Zhao, L.: Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics. Bioresour. Technol. 199, 300–305 (2012)CrossRefGoogle Scholar
  5. 5.
    Roy, S., Dhotre, M., Joshi, J.: CFD simulation of flow and axial dispersion in external loop airlift reactor. Chem. Eng. Res. Des. 84(8), 677–690 (2006)CrossRefGoogle Scholar
  6. 6.
    Pollard, D., Ison, A., Shamalou, P., Lilly, M.: Reactor heterogeneity with saccharopolyspora erythraea airlift fermentations. Biotechnol. Bioeng. 58(5), 453–463 (1998)CrossRefGoogle Scholar
  7. 7.
    Contreras-Flores, C., Peña-Castro, J., Flores-Cotera, L., Cañizares-Villanueva, R.: Advances in conceptual design of photobioreactors for microalgal culture. Interciencia 28(8), 450–456 (2008)Google Scholar
  8. 8.
    Razzak, S., Hossaina, M., Rahima, A.: Integrated \(\text{ CO }_{2}\) capture, wastewater treatment and biofuel production by microalgae culturing—a review. Renew. Sustain. Energy Rev. 27, 622–653 (2013)CrossRefGoogle Scholar
  9. 9.
    Hutmacher, D., Singh, H.: Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. 26(4), 166–172 (2008)CrossRefGoogle Scholar
  10. 10.
    Oey, R., Mudde, R., Portela, L., Van Den Akker, H.: Simulation of a slurry airlift using a two-fluid model. Chem. Eng. Sci. 56(2), 673–681 (2001)CrossRefGoogle Scholar
  11. 11.
    García, S., Paternina, E., Pupo, O., Bula, A., Di Mare, L.: CFD simulation of multiphase flow in an airlift column photobioreactor. Glob. NEST J. 16(6), 1121–1134 (2014)Google Scholar
  12. 12.
    Luo, H., Al-Dahhan, M.: Local characteristics of hydrodynamics in draft tube airlift bioreactor. Chem. Eng. Sci. 63(11), 3057–3068 (2008)CrossRefGoogle Scholar
  13. 13.
    Wang, X., Jia, X., Wen, J.: Transient CFD modeling of toluene waste gas biodegradation in a gas–liquid–solid three-phase airlift loop reactor by immobilized pseudomonas putida. Chem. Eng. J. 172(2–3), 735–745 (2011)CrossRefGoogle Scholar
  14. 14.
    Luo, H., Al-Dahhan, M.: Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem. Eng. Sci. 66(5), 907–923 (2011)CrossRefGoogle Scholar
  15. 15.
    Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transf. 15(2), 301–314 (1972)CrossRefGoogle Scholar
  16. 16.
    Launder, B., Sharma, B.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1(2), 131–137 (1974)CrossRefGoogle Scholar
  17. 17.
    Pfleger, D., Gomes, S., Gilbert, N., Wagner, H.: Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian–Eulerian modelling approach. Chem. Eng. Sci. 54(21), 5091–5099 (1999)CrossRefGoogle Scholar
  18. 18.
    CD-Adapco.: STAR-CCM+ User Guide, Version 8.02. CD-Adapco, New York (2013)Google Scholar
  19. 19.
    Prochazkova, G., Petr, K., Branyik, T.: Harvesting freshwater chlorella vulgaris with flocculant derived from spent brewer’s yeast. Bioresour. Technol. 177, 28–33 (2015)CrossRefGoogle Scholar
  20. 20.
    Lampert, W., Sommer, U.: Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York (1997)Google Scholar
  21. 21.
    Liu, R., Liu, Y., Liu, C.: Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor. Chem. Eng. Res. Des. 91, 211–220 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentUniversidad Pontificia BolivarianaMonteríaColombia
  2. 2.Mechanical Engineering DepartmentUniversidad Del NorteBarranquillaColombia

Personalised recommendations