Skip to main content
Log in

Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a strain gradient elasticity formulation for capturing the size effect in micro-scaled structures is presented to analyze the thermoelastic response of a functionally graded micro-rotating cylinder. The temperature distribution in the micro-rotating cylinder is analytically obtained by solving the steady-state, one-dimensional and axisymmetric Fourier heat conduction equation. For a functionally graded micro-rotating cylinder, except Poisson’s ratio, all mechanical and thermal properties such as elastic modulus, density and thermal expansion coefficient are assumed to vary through the thickness according to a power-law distribution. The thermomechanical governing differential equation is obtained as a fourth-order ordinary differential equation in terms of mechanical displacement. The generalized differential quadrature method is used for the solution of thermal stresses, strains and displacement in the micro-rotating cylinder under internal and external pressure. At first, numerical results are presented for the micro-rotating cylinder to validate the generalized differential quadrature method. Then, the results obtained from the strain gradient elasticity are compared to the classical elasticity solution. Furthermore, numerical results illustrate the effects of non-homogeneity constant, thermal field and rotation on the distribution of Von Mises stress, Von Mises strain and radial displacement. It is perceived that the mentioned parameters have considerable effects on the distribution of stress, strain and displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, X., Bhushan, B., Takashima, K., Baek, C.W., Kim, Y.K.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97(1), 481–494 (2003)

    Article  Google Scholar 

  2. Pei, J., Tian, F., Thundat, T.: Glucose biosensor based on the microcantilever. Anal. Chem. 76(2), 292–297 (2004)

    Article  Google Scholar 

  3. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  4. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  MATH  Google Scholar 

  5. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  6. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060 (2005)

    Article  Google Scholar 

  7. Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta. Mater. 46(14), 5109–5115 (1998)

    Article  Google Scholar 

  8. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41(3), 305–312 (2003)

    Article  Google Scholar 

  9. Wang, Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98(12), 124301 (2005)

    Article  Google Scholar 

  10. Ma, H.M., Gao, X.L., Reddy, J.N.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220(1–4), 217–235 (2011)

    Article  MATH  Google Scholar 

  11. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R., Darabi, M.A.: Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory. Compos. Struct. 114, 124–134 (2014)

    Article  Google Scholar 

  12. Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  13. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81(7), 863–874 (2011)

    Article  MATH  Google Scholar 

  14. Fleck, N.A., Hutchinson, J.W.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41(12), 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fleck, N.A., Hutchinson, J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 296–361 (1997)

    MATH  Google Scholar 

  16. Fleck, N.A., Hutchinson, J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49(10), 2245–2271 (2001)

    Article  MATH  Google Scholar 

  17. Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)

    Article  Google Scholar 

  18. Park, S.K., Gao, X.L.: Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355 (2006)

    Article  Google Scholar 

  19. Ma, H.M., Gao, X.L., Reddy, J.N.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids. 56(12), 3379–3391 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A., Ahmadian, M.T.: A strain gradient functionally graded Euler–Bernoulli beam formulation. Int. J. Eng. Sci. 52, 65–76 (2012)

    Article  MathSciNet  Google Scholar 

  21. Kong, S., Zhou, S., Nie, Z., Wang, K.: Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47(4), 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hosseini, M., Bahaadini, R.: Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016)

    Article  Google Scholar 

  23. Reddy, J.N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Asghari, M., Kahrobaiyan, M.H., Nikfar, M., Ahmadian, M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta. Mech. 223(6), 1233–1249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hosseini, M., Sadeghi-Goughari, M.: Vibration and instability analysis of nanotubes conveying fluid subjected to a longitudinal magnetic field. Appl. Math. Model. 40(4), 2560–2576 (2016)

    Article  MathSciNet  Google Scholar 

  26. Bahaadini, R., Hosseini, M.: Effects of nonlocal elasticity and slip condition on vibration and stability analysis of viscoelastic cantilever carbon nanotubes conveying fluid. Comput. Mater. Sci. 114, 151–159 (2016)

    Article  Google Scholar 

  27. Bahaadini, R., Hosseini, M.: Nonlocal divergence and flutter instability analysis of embedded fluid-conveying carbon nanotube under magnetic field. Microfluid. Nanofluid. 20(7), 1–14 (2016)

    Article  Google Scholar 

  28. Hosseini, M., Jamali, B., Bahaadini, R.: Nonlocal instability of cantilever, carbon nanotubes by considering surface effects subjected to axial flow. J. Vib. Control. 1–17 (2016). doi:10.1177/1077546316669063

  29. Şimşek, M., Aydın, M., Yurtcu, H.H., Reddy, J.N.: Size-dependent vibration of a microplate under the action of a moving load based on the modified couple stress theory. Acta Mech. 226(11), 3807–3822 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S.: Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J. Sound. Vib. 331(1), 94–106 (2012)

    Article  Google Scholar 

  31. Jamalpoor, A., Hosseini, M.: Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos. Part B Eng. 75, 53–64 (2015)

    Article  Google Scholar 

  32. Hosseini, M., Bahreman, M., Jamalpoor, A.: Using modified strain-gradient theory to investigate the size dependent biaxial buckling analysis of orthotropic multi-microplate system. Acta Mech. 227(6), 1621–1643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hosseini, M., Jamalpoor, A., Fath, A.: Surface effect on the biaxial buckling and free vibration of FGM nanoplate embedded in visco-Pasternak standard linear solid-type of foundation. Meccanica 1–16 (2016). doi:10.1007/s11012-016-0469-0

  34. Hosseini, M., Jamalpoor, A.: Analytical solution for thermo-mechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials. J. Therm. Stress. 38(12), 1430–1458 (2015)

    Article  Google Scholar 

  35. Mohammadi, M., Mahani, M.F.: An analytical solution for buckling analysis of size-dependent rectangular micro-plates according to the modified strain gradient and couple stress theories. Acta Mech. 226(10), 3477–3493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Danesh, V., Asghari, M.: Analysis of micro-rotating disks based on the strain gradient elasticity. Acta Mech. 225(7), 1955–1965 (2014)

    Article  MATH  Google Scholar 

  37. Gao, X.L., Park, S.K.: Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem. Int. J. Solids. Struct. 44(22), 7486–7499 (2007)

    Article  MATH  Google Scholar 

  38. Sadeghi, H., Baghani, M., Naghdabadi, R.: Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 50(1), 22–30 (2012)

    Article  MathSciNet  Google Scholar 

  39. Tokovyy, Y.V., Ma, C.C.: Analysis of 2D non-axisymmetric elasticity and thermoelasticity problems for radially inhomogeneous hollow cylinders. J. Eng. Math. 61(2–4), 171–184 (2008)

    Article  MATH  Google Scholar 

  40. Sheng, G.G., Wang, X.: Non-linear response of functionally graded cylindrical shells under mechanical and thermal loads. J. Therm. Stress. 34(11), 1105–1118 (2011)

    Article  Google Scholar 

  41. Peng, X.L., Li, X.F.: Thermoelastic analysis of a cylindrical vessel of functionally graded materials. Int. J. Pres. Ves. Pip. 87(5), 203–210 (2010)

    Article  Google Scholar 

  42. Lutz, M.P., Zimmerman, R.W.: Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere. J. Therm. Stress. 19(1), 39–54 (1996)

    Article  MathSciNet  Google Scholar 

  43. Liew, K.M., Kitipornchai, S., Zhang, X.Z., Lim, C.W.: Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders. Int. J. Solids. Struct. 40(10), 2355–2380 (2003)

    Article  MATH  Google Scholar 

  44. Dai, H.L., Wang, X.: Magneto-thermo-electro-elastic transient response in a piezoelectric hollow cylinder subjected to complex loadings. Int. J. Solids. Struct. 43(18), 5628–5646 (2006)

    Article  MATH  Google Scholar 

  45. Hosseini, M., Dini, A.: Magneto-thermo-elastic response of a rotating functionally graded cylinder. Struct. Eng. Mech. 56(1), 137–156 (2015)

    Article  Google Scholar 

  46. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tornabene, F., Viola, E.: 2-D solution for free vibrations of parabolic shells using generalized differential quadrature method. Eur. J. Mech. A Solid 27(6), 1001–1025 (2008)

    Article  MATH  Google Scholar 

  48. Wu, T.Y., Liu, G.R.: The generalized differential quadrature rule for initial-value differential equations. J. Sound. Vib. 233(2), 195–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chen, W.Q., Lv, C.F., Bian, Z.G.: Free vibration analysis of generally laminated beams via state-space-based differential quadrature. Compos. Struct. 63(3), 417–425 (2004)

    Article  Google Scholar 

  50. Bert, C.W., Malik, M.: Free vibration analysis of thin cylindrical shells by the differential quadrature method. J. Press. Vess T. Asme. 118(1), 1–12 (1996)

    Article  Google Scholar 

  51. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layer for MEMS applications. Mater. Sci. Forum. 490–493, 255–260 (2005)

    Article  Google Scholar 

  52. Tsai, N.C., Liou, J.S., Lin, C.C., Li, T.: Design of micro-electromagnetic drive on reciprocally rotating disc used for microgyroscopes. Sensor. Actuat. A Phys. 157(1), 68–76 (2010)

    Article  Google Scholar 

  53. Lee, S., Kim, D., Bryant, M.D., Ling, F.F.: A micro corona motor. Sensor. Actuat. A Phys. 118(2), 226–232 (2005)

    Article  Google Scholar 

  54. Kim, J.H., Lee, S.K.: Micro-patterning technique using a rotating cutting tool controlled by an electromagnetic actuator. Int. J. Mach. Tool. Manu. 101, 52–64 (2016)

    Article  Google Scholar 

  55. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids. Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  56. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  57. Murmu, T., Pradhan, S.C.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Phys. E LowDimens. Syst. Nanostruct. 41(7), 1232–1239 (2009)

    Article  Google Scholar 

  58. Malekzadeh, P., Setoodeh, A.R., Alibeygi Beni, A.: Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium. Compos. Struct. 93(8), 2083–2089 (2011)

    Article  Google Scholar 

  59. Ghadiri, M., Shafiei, N.: Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen theory using differential quadrature method. Microsyst. Technol 1–15 (2016). doi:10.1007/s00542-015-2662-9

  60. Mohammadimehr, M., Monajemi, A.A., Moradi, M.: Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM. J. Mech. Sci. Technol. 29(6), 2297–2305 (2015)

    Article  Google Scholar 

  61. Ghorbanpour Arani, A., Vossough, H., Kolahchi, R., Mosallaie Barzoki, A.A.: Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM. J. Mech. Sci. Technol. 26(10), 3047–3057 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hosseini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, M., Dini, A. & Eftekhari, M. Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method. Acta Mech 228, 1563–1580 (2017). https://doi.org/10.1007/s00707-016-1780-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1780-5

Navigation