Acta Mechanica

, Volume 228, Issue 3, pp 1177–1196 | Cite as

Propagation of Floquet–Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding

  • Igor V. Andrianov
  • Vladyslav V. Danishevskyy
  • Heiko Topol
  • Graham A. Rogerson
Original Paper

Abstract

The phononic band structure of waves, which travel though composites, results from the geometric and mechanical properties of the materials and from the interaction of the different constituents. In this article, we study two different models to simulate imperfect bonding and their impact on the phononic bands: (a) imperfect bonding is simulated by introducing an artificial interphase constituent with properties which define the bonding quality; (b) imperfect bonding is described by conjugate conditions in the interface, in which the difference in the displacement is proportional to the interfacial stress. Viscoelastic behavior of the constituents has a crucial influence on the traveling signal, and the wave attenuates with increasing viscosity. We study the interaction of the different bonding conditions and the viscoelastic behavior as well as the impact of such interplay on the wave attenuation and dispersion characteristics of the material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Weichert, D.: Wave propagation in periodic composites: higher-order asymptotic analysis versus plane-wave expansions method. J. Comput. Nonlinear Dyn. 6, 011,015 (2011)CrossRefGoogle Scholar
  2. 2.
    Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D.: Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc. R. Soc. A 464, 1181–1201 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Andrianov, I.V., Danishevs’kyy, V.V., Ryzhkov, O.I., Weichert, D.: Numerical study of formation of solitary strain waves in a nonlinear elastic layered composite material. Wave Motion 51, 405–417 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Andrianov, I.V., Danishevs’kyy, V.V., Topol, H.: Asymptotic homogenization for periodic composite materials with imperfect bonding conditions. In: Bolshakov, V.I., Weichert, D. (eds.) Advanced Problems in Mechanics of Heterogeneous Media and Thin-Walled Structures. ENEM (2010)Google Scholar
  5. 5.
    Andrianov, I.V., Danishevs’kyy, V.V., Topol, H., Weichert, D.: Homogenization of a 1D nonlinear dynamical problem for periodic composites. Z. Angew. Math. Mech. 91, 523–534 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bedford, A., Drumheller, D.S.: Introduction to Elastic Wave Propagation. Wiley, New York (1994)MATHGoogle Scholar
  7. 7.
    Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)CrossRefMATHGoogle Scholar
  8. 8.
    Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)MATHGoogle Scholar
  9. 9.
    Crandall, S.H., Dahl, N.C., Lardner, T.J.: An Introduction to the Mechanics of Solids. McGraw-Hill, New York (1959)Google Scholar
  10. 10.
    Craster, R.V., Joseph, L.M., Kaplunov, J.: Long-wave asymptotic theories: the connection between functionally graded waveguides and periodic media. Wave Motion 51, 581–588 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49, 333–346 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danishevs’kyy, V.V., Kaplunov, J.D., Rogerson, G.A.: Anti-plane shear waves in a fibre-reinforced composite with a non-linear imperfect interface. Int. J. Nonlinear Mech. 76, 223–232 (2015)CrossRefGoogle Scholar
  13. 13.
    Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. l’École Norm. Sup. 12, 47–88 (1883)MathSciNetMATHGoogle Scholar
  14. 14.
    Flügge, W.: Viscoelasticity. Springer, New York (1975)CrossRefMATHGoogle Scholar
  15. 15.
    German, M., Pamin, J.: Modelling of corrosion interface in RC cross-section. In: Pȩcherski, R., Rojek, J., Kowalczyk, P. (eds.) Book of Abstracts of the 38th Solid Mechanics Conference, pp. 54–55. Institute of Fundamental Technological Research (IPPT). Polish Academy of Sciences (August 27–31, 2012)Google Scholar
  16. 16.
    Geymonat, G., Krasucki, F., Lenci, S.: Mathematical analysis of a bonded joint with a soft thin adhesive. Math. Mech. Solids 4, 201–225 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Giurgiutiu, V., Reifsnider, K., Kriz, R., Ahn, B., Lesko, J.: Influence of fiber coating and interphase on the design of polymeric composite strength—analytical predictions. In: 36th Structures, Structural Dynamics and Materials Conference, vol. 36, pp. 453–469 (1995)Google Scholar
  18. 18.
    Goland, M., Reissner, E.: The stresses in cemented joints. J. Appl. Mech. 11, 17–27 (1944)Google Scholar
  19. 19.
    Guz, A.N., Shul’ga, N.A.: Dynamics of laminated and fibrous composites. Appl. Mech. Rev. 45, 35–60 (1992)CrossRefGoogle Scholar
  20. 20.
    Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21, 129–160 (1979)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Hexion homepage. https://www.hexion.com. Accessed 21 Apr 2016
  23. 23.
    Hussein, M.I.: Theory of damped Bloch waves in elastic media. Phys. Rev. B 80, 212301 (2009)CrossRefGoogle Scholar
  24. 24.
    Hussein, M.I., Hamza, K., Hulbert, G.M., Scott, R.A., Saitou, K.: Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct. Multidisc. Optim. 31, 60–75 (2006)CrossRefGoogle Scholar
  25. 25.
    Karpinos, D.M., Fedorenko, V.K.: Effect of protective coatings on the strength of the fiber-matrix bond in composite materials. Strength Mater. 8, 445–448 (1976)CrossRefGoogle Scholar
  26. 26.
    Klusemann, B., Svendsen, B.: Deviation of a model of adhesively bonded joints by the asymptotic expansion method. Int. J. Eng. Sci. 29, 493–512 (1991)CrossRefGoogle Scholar
  27. 27.
    Krasucki, F., Lenci, S.: Analysis of interfaces of variable stiffness. Int. J. Solids Struct. 37, 3619–3632 (2000)CrossRefMATHGoogle Scholar
  28. 28.
    Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313–2322 (1994)CrossRefGoogle Scholar
  29. 29.
    Lebedev, L.P., Vorovich, I.I.: Functional Analysis in Mechanics. Springer, New York (2003)CrossRefMATHGoogle Scholar
  30. 30.
    Lee, E.H., Yang, W.H.: On waves in composite materials with periodic structure. SIAM J. Appl. Math. 25, 492–499 (1973)CrossRefMATHGoogle Scholar
  31. 31.
    Liu, Y., Yu, D., Zhao, H., Wen, J., Wen, X.: Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models. Phys. Lett. A 41, 065,503 (2008)Google Scholar
  32. 32.
    Lyapunov, A.M.: Stability of Motion. Academic Press, Boston (1966)MATHGoogle Scholar
  33. 33.
    Mace, B.R., Manconi, E.: Wave motion and dispersion phenomena: veering, locking and strong coupling effects. J. Acoust. Soc. Am. 131, 1015–1028 (2012)CrossRefGoogle Scholar
  34. 34.
    Mead, D.: Wave propagation in continuous periodic structures: research contributions from Southampton 1964–1995. J. Sound Vib. 190, 495–524 (1996)CrossRefGoogle Scholar
  35. 35.
    Merheb, B., Deymier, P.A., Jain, M., Aloshyna-Lesuffleur, M., Mohanty, S., Berker, A., Greger, R.W.: Elastic and viscoelastic effects in rubber/air acoustic band gap structures: a theoretical and experimental study. J. Appl. Phys. 104, 064,913 (2008)CrossRefGoogle Scholar
  36. 36.
    Movchan, A.B., Nicorovici, N.A., McPhedran, R.C.: Green’s tensors and lattice sums for elastostatics and elastodynamics. Proc. R. Soc. A 453, 643–662 (1997)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Nemat-Nasser, S., Sadeghi, H., Amirkhizi, A.V., Srivastava, A.: Phononic layered composites for stress-wave attenuation. Mech. Res. Commun. 68, 65–69 (2015)CrossRefGoogle Scholar
  38. 38.
    Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 42, 53–73 (2015)CrossRefGoogle Scholar
  39. 39.
    Psarobas, I.E., Stefanou, N., Modinos, A.: Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B 62, 278–291 (2000)CrossRefGoogle Scholar
  40. 40.
    Ruzzene, M., Baz, A.: Control of wave propagation in periodic composite rods using shape memory inserts. J. Vib. Acoust. 122, 151–159 (2000)CrossRefGoogle Scholar
  41. 41.
    Shen, M., Cao, W.: Acoustic bandgap formation in a periodic structure with multilayer unit cells. J. Phys. D Appl. Phys. 33, 1150–1154 (2000)CrossRefGoogle Scholar
  42. 42.
    Shul’ga, N.A.: Theory of dynamic processes in mechanical systems and materials of regular structure. Int. Appl. Mech. 45, 1301–1330 (2009)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Termonia, Y.: Fibre coating as a means to compensate for poor adhesion in fibre-reinforced materials. J. Mat. Sci. 25, 103–106 (1990)CrossRefGoogle Scholar
  44. 44.
    Topol, H.: Acoustic and Mechanical Properties of Viscoelastic, Linear Elastic, and Nonlinear Elastic Composites. Ph.D. thesis, RWTH Aachen University (2012)Google Scholar
  45. 45.
    Wang, W., Yua, J., Tang, Z.: General dispersion and dissipation relations in a one-dimensional viscoelastic lattice. Phys. Lett. A 373, 5–8 (2008)CrossRefGoogle Scholar
  46. 46.
    Wang, Y.F., Wang, Y.S., Laude, V.: Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Lett. B 92, 194,110-1-14 (2015)Google Scholar
  47. 47.
    Wessel, J.K.: The Handbook of Advanced Materials: Enabling New Designs. Wiley, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Igor V. Andrianov
    • 1
  • Vladyslav V. Danishevskyy
    • 2
  • Heiko Topol
    • 3
  • Graham A. Rogerson
    • 2
  1. 1.Institute of General MechanicsRWTH Aachen UniversityAachenGermany
  2. 2.School of Computing and MathematicsKeele UniversityStaffordshireUK
  3. 3.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations