Skip to main content
Log in

Propagation of Floquet–Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The phononic band structure of waves, which travel though composites, results from the geometric and mechanical properties of the materials and from the interaction of the different constituents. In this article, we study two different models to simulate imperfect bonding and their impact on the phononic bands: (a) imperfect bonding is simulated by introducing an artificial interphase constituent with properties which define the bonding quality; (b) imperfect bonding is described by conjugate conditions in the interface, in which the difference in the displacement is proportional to the interfacial stress. Viscoelastic behavior of the constituents has a crucial influence on the traveling signal, and the wave attenuates with increasing viscosity. We study the interaction of the different bonding conditions and the viscoelastic behavior as well as the impact of such interplay on the wave attenuation and dispersion characteristics of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrianov, I.V., Awrejcewicz, J., Danishevs’kyy, V.V., Weichert, D.: Wave propagation in periodic composites: higher-order asymptotic analysis versus plane-wave expansions method. J. Comput. Nonlinear Dyn. 6, 011,015 (2011)

    Article  Google Scholar 

  2. Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D.: Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc. R. Soc. A 464, 1181–1201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrianov, I.V., Danishevs’kyy, V.V., Ryzhkov, O.I., Weichert, D.: Numerical study of formation of solitary strain waves in a nonlinear elastic layered composite material. Wave Motion 51, 405–417 (2014)

    Article  MathSciNet  Google Scholar 

  4. Andrianov, I.V., Danishevs’kyy, V.V., Topol, H.: Asymptotic homogenization for periodic composite materials with imperfect bonding conditions. In: Bolshakov, V.I., Weichert, D. (eds.) Advanced Problems in Mechanics of Heterogeneous Media and Thin-Walled Structures. ENEM (2010)

  5. Andrianov, I.V., Danishevs’kyy, V.V., Topol, H., Weichert, D.: Homogenization of a 1D nonlinear dynamical problem for periodic composites. Z. Angew. Math. Mech. 91, 523–534 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bedford, A., Drumheller, D.S.: Introduction to Elastic Wave Propagation. Wiley, New York (1994)

    MATH  Google Scholar 

  7. Bloch, F.: Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1928)

    Article  MATH  Google Scholar 

  8. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  9. Crandall, S.H., Dahl, N.C., Lardner, T.J.: An Introduction to the Mechanics of Solids. McGraw-Hill, New York (1959)

    Google Scholar 

  10. Craster, R.V., Joseph, L.M., Kaplunov, J.: Long-wave asymptotic theories: the connection between functionally graded waveguides and periodic media. Wave Motion 51, 581–588 (2014)

    Article  MathSciNet  Google Scholar 

  11. Craster, R.V., Kaplunov, J., Nolde, E., Guenneau, S.: Bloch dispersion and high frequency homogenization for separable doubly-periodic structures. Wave Motion 49, 333–346 (2012)

    Article  MathSciNet  Google Scholar 

  12. Danishevs’kyy, V.V., Kaplunov, J.D., Rogerson, G.A.: Anti-plane shear waves in a fibre-reinforced composite with a non-linear imperfect interface. Int. J. Nonlinear Mech. 76, 223–232 (2015)

    Article  Google Scholar 

  13. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. Sci. l’École Norm. Sup. 12, 47–88 (1883)

    MathSciNet  MATH  Google Scholar 

  14. Flügge, W.: Viscoelasticity. Springer, New York (1975)

    Book  MATH  Google Scholar 

  15. German, M., Pamin, J.: Modelling of corrosion interface in RC cross-section. In: Pȩcherski, R., Rojek, J., Kowalczyk, P. (eds.) Book of Abstracts of the 38th Solid Mechanics Conference, pp. 54–55. Institute of Fundamental Technological Research (IPPT). Polish Academy of Sciences (August 27–31, 2012)

  16. Geymonat, G., Krasucki, F., Lenci, S.: Mathematical analysis of a bonded joint with a soft thin adhesive. Math. Mech. Solids 4, 201–225 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giurgiutiu, V., Reifsnider, K., Kriz, R., Ahn, B., Lesko, J.: Influence of fiber coating and interphase on the design of polymeric composite strength—analytical predictions. In: 36th Structures, Structural Dynamics and Materials Conference, vol. 36, pp. 453–469 (1995)

  18. Goland, M., Reissner, E.: The stresses in cemented joints. J. Appl. Mech. 11, 17–27 (1944)

    Google Scholar 

  19. Guz, A.N., Shul’ga, N.A.: Dynamics of laminated and fibrous composites. Appl. Mech. Rev. 45, 35–60 (1992)

    Article  Google Scholar 

  20. Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hewitt, E., Hewitt, R.E.: The Gibbs–Wilbraham phenomenon: an episode in Fourier analysis. Arch. Hist. Exact Sci. 21, 129–160 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hexion homepage. https://www.hexion.com. Accessed 21 Apr 2016

  23. Hussein, M.I.: Theory of damped Bloch waves in elastic media. Phys. Rev. B 80, 212301 (2009)

    Article  Google Scholar 

  24. Hussein, M.I., Hamza, K., Hulbert, G.M., Scott, R.A., Saitou, K.: Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Struct. Multidisc. Optim. 31, 60–75 (2006)

    Article  Google Scholar 

  25. Karpinos, D.M., Fedorenko, V.K.: Effect of protective coatings on the strength of the fiber-matrix bond in composite materials. Strength Mater. 8, 445–448 (1976)

    Article  Google Scholar 

  26. Klusemann, B., Svendsen, B.: Deviation of a model of adhesively bonded joints by the asymptotic expansion method. Int. J. Eng. Sci. 29, 493–512 (1991)

    Article  Google Scholar 

  27. Krasucki, F., Lenci, S.: Analysis of interfaces of variable stiffness. Int. J. Solids Struct. 37, 3619–3632 (2000)

    Article  MATH  Google Scholar 

  28. Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313–2322 (1994)

    Article  Google Scholar 

  29. Lebedev, L.P., Vorovich, I.I.: Functional Analysis in Mechanics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  30. Lee, E.H., Yang, W.H.: On waves in composite materials with periodic structure. SIAM J. Appl. Math. 25, 492–499 (1973)

    Article  MATH  Google Scholar 

  31. Liu, Y., Yu, D., Zhao, H., Wen, J., Wen, X.: Theoretical study of two-dimensional phononic crystals with viscoelasticity based on fractional derivative models. Phys. Lett. A 41, 065,503 (2008)

    Google Scholar 

  32. Lyapunov, A.M.: Stability of Motion. Academic Press, Boston (1966)

    MATH  Google Scholar 

  33. Mace, B.R., Manconi, E.: Wave motion and dispersion phenomena: veering, locking and strong coupling effects. J. Acoust. Soc. Am. 131, 1015–1028 (2012)

    Article  Google Scholar 

  34. Mead, D.: Wave propagation in continuous periodic structures: research contributions from Southampton 1964–1995. J. Sound Vib. 190, 495–524 (1996)

    Article  Google Scholar 

  35. Merheb, B., Deymier, P.A., Jain, M., Aloshyna-Lesuffleur, M., Mohanty, S., Berker, A., Greger, R.W.: Elastic and viscoelastic effects in rubber/air acoustic band gap structures: a theoretical and experimental study. J. Appl. Phys. 104, 064,913 (2008)

    Article  Google Scholar 

  36. Movchan, A.B., Nicorovici, N.A., McPhedran, R.C.: Green’s tensors and lattice sums for elastostatics and elastodynamics. Proc. R. Soc. A 453, 643–662 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nemat-Nasser, S., Sadeghi, H., Amirkhizi, A.V., Srivastava, A.: Phononic layered composites for stress-wave attenuation. Mech. Res. Commun. 68, 65–69 (2015)

    Article  Google Scholar 

  38. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 42, 53–73 (2015)

    Article  Google Scholar 

  39. Psarobas, I.E., Stefanou, N., Modinos, A.: Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B 62, 278–291 (2000)

    Article  Google Scholar 

  40. Ruzzene, M., Baz, A.: Control of wave propagation in periodic composite rods using shape memory inserts. J. Vib. Acoust. 122, 151–159 (2000)

    Article  Google Scholar 

  41. Shen, M., Cao, W.: Acoustic bandgap formation in a periodic structure with multilayer unit cells. J. Phys. D Appl. Phys. 33, 1150–1154 (2000)

    Article  Google Scholar 

  42. Shul’ga, N.A.: Theory of dynamic processes in mechanical systems and materials of regular structure. Int. Appl. Mech. 45, 1301–1330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Termonia, Y.: Fibre coating as a means to compensate for poor adhesion in fibre-reinforced materials. J. Mat. Sci. 25, 103–106 (1990)

    Article  Google Scholar 

  44. Topol, H.: Acoustic and Mechanical Properties of Viscoelastic, Linear Elastic, and Nonlinear Elastic Composites. Ph.D. thesis, RWTH Aachen University (2012)

  45. Wang, W., Yua, J., Tang, Z.: General dispersion and dissipation relations in a one-dimensional viscoelastic lattice. Phys. Lett. A 373, 5–8 (2008)

    Article  Google Scholar 

  46. Wang, Y.F., Wang, Y.S., Laude, V.: Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Lett. B 92, 194,110-1-14 (2015)

    Google Scholar 

  47. Wessel, J.K.: The Handbook of Advanced Materials: Enabling New Designs. Wiley, New York (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Topol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrianov, I.V., Danishevskyy, V.V., Topol, H. et al. Propagation of Floquet–Bloch shear waves in viscoelastic composites: analysis and comparison of interface/interphase models for imperfect bonding. Acta Mech 228, 1177–1196 (2017). https://doi.org/10.1007/s00707-016-1765-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1765-4

Navigation