Advertisement

Acta Mechanica

, Volume 227, Issue 8, pp 2323–2342 | Cite as

Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: an approximate method

  • M. A. De RosaEmail author
  • M. Lippiello
  • H. D. Martin
  • M. T. Piovan
Original Paper

Abstract

Nanosensors are simple engineering devices designed to detect and convey informations about nanoparticles and biomolecules. The nanosized mass sensors are based on the fact that the resonant frequency is sensitive to the resonator and the attached mass. The change of the attached mass on the resonator causes the resonant frequency to deviate from its original value. The key challenge in mass detection is in quantifying the changes in the resonant frequencies due to the added masses. The present paper deals with the free vibration analysis of a single-walled carbon nanotube with attached distributed mass, located in a generic position. According to the nonlocal Euler–Bernoulli beam theory, a system of three equations of motion, of a single-walled carbon nanotube with an added mass, is derived. Using an approximate method, generalized nondimensional calibration constants are derived for an explicit relationship between the added mass, the nonlocal parameter, and the frequency shift. Numerical results for different boundary conditions and nonlocal coefficient are performed in order to evaluate the effect of the added mass.

Keywords

Resonant Frequency Frequency Shift Free Vibration Analysis Nonlocal Parameter Nonlocal Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)CrossRefGoogle Scholar
  2. 2.
    Salvetat, J.P., Bonard, J.-M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W., Zuppiroli, L.: Mechanical properties of carbon nanotubes. Appl. Phys. A 69, 255–260 (1999)CrossRefGoogle Scholar
  3. 3.
    Thostenson, E.T., Ren, Z., Chou, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  4. 4.
    Demczyk, B.G., Wang, Y.M., Wang, Y.M., Cumings, J., Hetman, M., Han, W., Zettl, A., Ritchie, R.O.: Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A 334, 173–178 (2002)CrossRefGoogle Scholar
  5. 5.
    Collins, P.G., Avouris, P.: Nanotubes for electronics. Sci. Am. 283, 62–69 (2000)CrossRefGoogle Scholar
  6. 6.
    Wu, D.H., Chien, W.T., Chen, C.S., Chen, H.H.: Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sens. Actuators A 126, 117–121 (2006)CrossRefGoogle Scholar
  7. 7.
    Joshi, A.Y., Sharma, S.C., Harsha, S.P.: Dynamic analysis of a clamped wavy single walled carbon nanotube based nanomechanical sensors. J. Nanotechnol. Eng. Med. 1, 31007–031014 (2010)CrossRefGoogle Scholar
  8. 8.
    Mehdipour, I., Barari, A., Domairry, G.: Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50, 1830–1833 (2011)CrossRefGoogle Scholar
  9. 9.
    Georgantzinos, S.K., Anifantis, N.K.: Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Phys. E 42, 1795–1801 (2010)CrossRefGoogle Scholar
  10. 10.
    Elishakoff, I., Versaci, C., Muscolino, G.: Clamped–free double-walled carbon nanotube-based mass sensor. Acta Mech. 219, 29–43 (2011)CrossRefzbMATHGoogle Scholar
  11. 11.
    Elishakoff, I., Versaci, C., Muscolino, G.: Effective stiffness and effective mass of the double-walled carbon nanotube sensor. J. Nanotechnol. Eng. Med. 2, 011008 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Elishakoff, I., Challamel, N., Soret, C., Bekel, Y., Gomez, T.: Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371(1993), 20120424 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Elishakoff, I., Pentaras, D., Dujat, K., Versaci, C., Muscolino, G., Storch, J., Bucas, S., Challamel, N., Natsuki, T., Zhang, Y.Y., Wang, C.M., Ghyselinck, G.: Carbon Nanotubes and Nano Sensors: Vibrations, Buckling, and Ballistic Impact. ISTE-Wiley, London (2012)CrossRefGoogle Scholar
  14. 14.
    Mateiu, R., Kuhle, A., Marie, R., Boisen, A.: Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope. Ultramicroscopy 105, 233–237 (2005)CrossRefGoogle Scholar
  15. 15.
    Kang, J.W., Kwon, O.K., Lee, J.H., Choi, Y.G., Hwang, H.J.: Frequency change by inter-walled length difference of double-walled carbon nanotube resonator. Solid State Commun. 149, 1574–1577 (2009)CrossRefGoogle Scholar
  16. 16.
    Kang, J.W., Kwon, O.K., Hwang, H.J., Jiang, Q.: Resonance frequency distribution of cantilevered (5,5) (10,10) double-walled carbon nanotube with different intertube lengths. Mol. Simul. 37, 18–22 (2011)CrossRefGoogle Scholar
  17. 17.
    Elishakoff, I., Pentaras, D.: Fundamental natural frequencies of double-walled carbon nanotubes. J. Sound Vib. 322, 652–664 (2009)CrossRefGoogle Scholar
  18. 18.
    Eringen, A.C.: On differential equations of non local elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys. 54, 4703–4710 (1983)CrossRefGoogle Scholar
  19. 19.
    Reddy, J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)CrossRefzbMATHGoogle Scholar
  20. 20.
    Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)CrossRefGoogle Scholar
  21. 21.
    Ghannadpour, S.A.M., Mohammadi, B., Fazilati, J.: Bending buckling and vibration problems of nonlocal Euler beams using Ritz method. Compos. Struct. 96, 584–589 (2013)CrossRefGoogle Scholar
  22. 22.
    Pradhan, S.C., Phadicar, J.K.: Bending buckling and vibration analyses of nonhomogeneous nanotubes using GDQ and nonlocal elasticity theory. Struct. Eng. Mech. Int. J. 33, 193–213 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, Q., Varadan, V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)CrossRefGoogle Scholar
  24. 24.
    De Rosa, M.A., Lippiello, M.: Free vibration analysis of DWCNTs using CDM and Rayleigh–Schmidt based on nonlocal Euler–Bernoulli beam theory. Sci. World J (2014)Google Scholar
  25. 25.
    Ansari, R., Sahmani, S.: Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun. Nonlinear Sci. Numer. Simul. 17, 1965–1979 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lee, H.L., Hsu, J.C., Chang, W.J.: Frequency shift of carbon nanotube-based mass sensors using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)CrossRefGoogle Scholar
  27. 27.
    Aydogdu, M., Filiz, S.: Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Phys. E 43, 1229–1234 (2001)CrossRefGoogle Scholar
  28. 28.
    Shen, Z.B., Deng, B., Li, X.F., Tang, G.J.: Buckling instability of carbon nanotube atomic force microscope probe clamped in an elastic medium. ASME J. Nanotechnol. Eng. Med. 2, 031003 (2011)CrossRefGoogle Scholar
  29. 29.
    Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based bio-sensor. Phys. E 42, 104–109 (2009)CrossRefGoogle Scholar
  30. 30.
    Murmu, T., Adhikari, S.: Nonlocal frequency analysis of nanoscale biosensors. Sens. Actuators A 173, 41–48 (2012)CrossRefGoogle Scholar
  31. 31.
    Adhikari, S., Chowdhury, R.: The calibration of nanotube based bionanosensors. J. Appl. Phys. 107, 124322 (2010)CrossRefGoogle Scholar
  32. 32.
    De Rosa, M.A., Lippiello, M.: Hamilton principle for SWCN and a modified approach for nonlocal frequency analysis of nanoscale biosensor. Int. J. Recent Sci. Res. 6, 2355–2365 (2015)Google Scholar
  33. 33.
    Reddy, J.N., Pang, S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511–26 (2008)CrossRefGoogle Scholar
  34. 34.
    Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T., Collet, B.: On nonconservativeness of Eringen’s nonlocal elasticity in beam mechanics: correction from a discrete-based approach. Arch. Appl. Mech. 84, 1275–1292 (2014)CrossRefGoogle Scholar
  35. 35.
    De Rosa, M.A., Franciosi, C., Lippiello, M., Piovan, M.T.: Nonlocal frequency analysis of nanosensors with attached distributed biomolecules with different boundary conditions. Mech. Comput. 33, 1529–1541 (2014)Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • M. A. De Rosa
    • 1
    Email author
  • M. Lippiello
    • 2
  • H. D. Martin
    • 3
  • M. T. Piovan
    • 4
  1. 1.School of EngineeringUniversity of BasilicataPotenzaItaly
  2. 2.Department of Structures for Engineering and ArchitectureUniversity of Naples “Federico II”NaplesItaly
  3. 3.Facultad Regional Reconquista UTNReconquistaArgentina
  4. 4.Centro de investigaciones de Mecanica Teorica y AplicadaUniversidad Tecnologica Nacional FRBBBahía BlancaArgentina

Personalised recommendations