Acta Mechanica

, Volume 227, Issue 8, pp 2099–2109 | Cite as

Progressive damage identification using dual extended Kalman filter

  • Subhamoy Sen
  • Baidurya BhattacharyaEmail author
Original Paper


Existing Kalman filter-based parameter identification algorithms estimate the system parameters as either sole states or a subset of augmented states. While the former approach requires the measurement to be sufficiently clean, the latter is reported to have numerical stability issues. Since the parameters are estimated in both these approaches in an optimal sense, in the presence of a significant variation in parameters (due to damage), the estimates may often diverge. In this article, we propose an online health monitoring scheme powered by dual extended Kalman filtering technique to simultaneously estimate the system parameters along with the response states of a reduced-order system. To capacitate damage localization beyond sensor resolution, the proposed method employs location-based structural properties as system parameter. This reduces the dimensionality of the formulation from \({4n^2}\) elements in the state matrix to only a few physical parameters. Unnecessary estimation of a large number of unmeasured response states has been avoided by employing the system reduction technique and thus by describing the system using only measured DOFs. This in turn enables estimating a poorly observed system as a fully observed one. Two numerical experiments are performed on two degrading structures: an Euler–Bernoulli beam and a bridge truss to demonstrate the competency of the algorithm with reduced-order models.


Damage Detection Structural Health Monitoring Bernoulli Beam State Transition Matrix Progressive Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Hussein A., Haldar A.: Novel unscented Kalman filter for health assessment of structural systems with unknown input. J. Eng. Mech. 141(7), 04015,012 (2015). doi: 10.1002/stc.1764 CrossRefGoogle Scholar
  2. 2.
    Al-Hussein A., Haldar A.: Unscented Kalman filter with unknown input and weighted global iteration for health assessment of large structural systems. Struct. Control Health Monit. 23(1), 156–175 (2016). doi: 10.1061/(ASCE)EM.1943-7889.0000926 CrossRefGoogle Scholar
  3. 3.
    Azam, S.E.: Dual estimation and reduced order modeling of damaging structures. In: Online Damage Detection in Structural Systems, pp. 105–121. Springer, Berlin (2014). doi: 10.1007/978-3-319-02559-9-5
  4. 4.
    Azam S.E., Chatzi E., Papadimitriou C.: A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech. Syst. Signal Process. 60, 866–886 (2015). doi: 10.1016/j.mechrescom.2012.08.006 CrossRefGoogle Scholar
  5. 5.
    Azam S.E., Mariani S.: Dual estimation of partially observed nonlinear structural systems: a particle filter approach. Mech. Res. Commun. 46, 54–61 (2012). doi: 10.1016/j.ymssp.2015.02.001 CrossRefGoogle Scholar
  6. 6.
    Bernal D., Beck J.: Preface to the special issue on phase I of the IASC-ASCE structural health monitoring benchmark. J. Eng. Mech. 130(1), 1–2 (2004). doi: 10.1061/(ASCE)0733-9399(2004)130:1(1) CrossRefGoogle Scholar
  7. 7.
    Capellari, G., Azam, S.E., Mariani, S.: Online damage detection in plates via vibration measurements. In: Model Validation and Uncertainty Quantification, vol. 3, pp. 85–91. Springer, Berlin (2015). doi: 10.1007/978-3-319-15224-0-9
  8. 8.
    Chatzi E.N., Smyth A.W.: The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing. Struct. Control Health Monit. 16(1), 99–123 (2009). doi: 10.1002/stc.290 CrossRefGoogle Scholar
  9. 9.
    Chatzi E.N., Smyth A.W.: Particle filter scheme with mutation for the estimation of time-invariant parameters in structural health monitoring applications. Struct. Control Health Monit. 20(7), 1081–1095 (2013). doi: 10.1002/stc.1520 CrossRefGoogle Scholar
  10. 10.
    Chen Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics 182(1), 1–69 (2003)CrossRefGoogle Scholar
  11. 11.
    Cheng C., Cebon D.: Parameter and state estimation for articulated heavy vehicles. Veh. Syst. Dyn. 49(1–2), 399–418 (2011). doi: 10.1080/00423110903406656 CrossRefGoogle Scholar
  12. 12.
    Corigliano A., Mariani S.: Parameter identification in explicit structural dynamics: performance of the extended Kalman filter. Comput. Methods Appl. Mech. Eng. 193(36), 3807–3835 (2004). doi: 10.1016/j.cma.2004.02.003 CrossRefzbMATHGoogle Scholar
  13. 13.
    Corigliano, A., Mariani, S., Zinovyeva, O., Karpenko, N.: 4637-Identification of laminate mechanical properties via extended Kalman filter. In: ICF11, Italy 2005 (2013)Google Scholar
  14. 14.
    Das, A.K., Haldar, A., Chakraborty, S.: Health assessment of large two dimensional structures using limited information: recent advances. Adv. Civ. Eng. (2011). doi: 10.1155/2012/582472
  15. 15.
    Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review. Technical report. Los Alamos National Lab., NM (1996). doi: 10.2172/249299
  16. 16.
    Doebling S.W., Farrar C.R., Prime M.B. et al.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)CrossRefGoogle Scholar
  17. 17.
    Farrar C.R., Doebling S.W., Nix D.A.: Vibration-based structural damage identification. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1778), 131–149 (2001). doi: 10.1098/rsta.2000.0717 CrossRefzbMATHGoogle Scholar
  18. 18.
    Ghanem R., Shinozuka M.: Structural-system identification. I: theory. J. Eng. Mech. 121(2), 255–264 (1995). doi: 10.1061/(ASCE)0733-9399(1995)121:2(255) CrossRefGoogle Scholar
  19. 19.
    Haykin, S.S., Haykin, S.S., Haykin, S.S.: Kalman filtering and neural networks. Wiley Online Library (2001). doi: 10.1002/0471221546.fmatter-indsub
  20. 20.
    Hoshiya M., Saito E.: Structural identification by extended Kalman filter. J. Eng. Mech. 110(12), 1757–1770 (1984). doi: 10.1061/(ASCE)0733-9399(1984)110:12(1757) CrossRefGoogle Scholar
  21. 21.
    Johnson E.A., Lam H.F., Katafygiotis L.S., Beck J.L.: Phase II ASC-ASCE structural health monitoring benchmark problem using simulated data. J. Eng. Mech. 130(1), 3–15 (2004). doi: 10.1061/(ASCE)0733-9399(2004)130:1(3) CrossRefGoogle Scholar
  22. 22.
    Julier S.J., Uhlmann J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004). doi: 10.1109/JPROC.2003.823141 CrossRefGoogle Scholar
  23. 23.
    Kalman R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). doi: 10.1115/1.3662552 CrossRefGoogle Scholar
  24. 24.
    Khodadadi H., Jazayeri-Rad H.: Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor. Comput. Chem. Eng. 35(11), 2426–2436 (2011). doi: 10.1016/j.compchemeng.2010.12.010 CrossRefGoogle Scholar
  25. 25.
    Ljung L.: Asymptotic behavior of the extended Kalman filter as a parameter estimator for linear systems. IEEE Trans. Autom. Control 24(1), 36–50 (1979). doi: 10.1109/TAC.1979.1101943 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification, Cambridge: MIT Press, (1983), URN:urn:nbn:se:liu:diva-102246Google Scholar
  27. 27.
    Mariani S., Corigliano A.: Impact induced composite delamination: state and parameter identification via joint and dual extended Kalman filters. Comput. Methods Appl. Mech. Eng. 194(50), 5242–5272 (2005). doi: 10.1016/j.cma.2005.01.007 CrossRefzbMATHGoogle Scholar
  28. 28.
    Mariani S., Ghisi A.: Unscented Kalman filtering for nonlinear structural dynamics. Nonlinear Dyn. 49(1–2), 131–150 (2007). doi: 10.1007/s11071-006-9118-9 CrossRefzbMATHGoogle Scholar
  29. 29.
    Maruyama, O., Hoshiya, M.: System identification of an experimental model by extended Kalman filter. In: Structural Safety and Reliability: ICOSSAR’01, p. 2001 (2001)Google Scholar
  30. 30.
    Mehrjoo M., Khaji N., Moharrami H., Bahreininejad A.: Damage detection of truss bridge joints using artificial neural networks. Expert Syst. Appl. 35(3), 1122–1131 (2008). doi: 10.1016/j.eswa.2007.08.008 CrossRefGoogle Scholar
  31. 31.
    Nævdal G., Johnsen L.M., Aanonsen S.I., Vefring E.H. et al.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10(01), 66–74 (2005). doi: 10.2118/84372-PA CrossRefGoogle Scholar
  32. 32.
    Nelson L.W., Stear E.: The simultaneous on-line estimation of parameters and states in linear systems. IEEE Trans. Autom. Control 21(1), 94–98 (1976). doi: 10.1109/TAC.1976.1101148 CrossRefzbMATHGoogle Scholar
  33. 33.
    O’Callahan, J., Avitabile, P., Riemer, R.: System equivalent reduction expansion process (SEREP). In: Proceedings of the 7th International Modal Analysis Conference, vol. 1, pp. 29–37. Union College Schnectady, NY (1989)Google Scholar
  34. 34.
    Plett G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277–292 (2004). doi: 10.1016/j.jpowsour.2004.02.033 CrossRefGoogle Scholar
  35. 35.
    Rytter, A.: Vibration Based Inspection of Civil Engineering Structures, Ph.D. Thesis. Aalborg University Denmark (1993)Google Scholar
  36. 36.
    Sato T., Takei K.: Development of a Kalman filter with fading memory. Struct. Saf. Reliab. 387, 394 (1998)Google Scholar
  37. 37.
    Shinozuka M., Ghanem R.: Structural system identification. II: experimental verification. J. Eng. Mech. 121(2), 265–273 (1995). doi: 10.1061/(ASCE)0733-9399(1995)121:2(265) CrossRefGoogle Scholar
  38. 38.
    Sholeh K., Vafai A., Kaveh A.: Online detection of the breathing crack using an adaptive tracking technique. Acta Mech. 188(3–4), 139–154 (2007). doi: 10.1007/s00707-006-0383-y CrossRefzbMATHGoogle Scholar
  39. 39.
    Smyth A., Masri S., Chassiakos A., Caughey T.: On-line parametric identification of MDOF nonlinear hysteretic systems. J. Eng. Mech. 125(2), 133–142 (1999). doi: 10.1061/(ASCE)0733-9399(1999)125:2(133) CrossRefGoogle Scholar
  40. 40.
    Smyth A.W., Masri S.F., Kosmatopoulos E.B., Chassiakos A.G., Caughey T.K.: Development of adaptive modeling techniques for non-linear hysteretic systems. Int. J. Non-Linear Mech. 37(8), 1435–1451 (2002). doi: 10.1016/S0020-7462(02)00031-8 CrossRefzbMATHGoogle Scholar
  41. 41.
    Wan E.A., Nelson A.T.: Dual Kalman filtering methods for nonlinear prediction, estimation, and smoothing. Adv. Neural Inf. Process. Syst. 9, 793–799 (1997)Google Scholar
  42. 42.
    Wan, E.A., Nelson, A.T.: Dual extended Kalman filter methods. In: Kalman Filtering and Neural Networks, pp. 123–173 (2001)Google Scholar
  43. 43.
    Welch, G., Bishop, G.: An Introduction to the Kalman Filter, Technical report, TR 95-041. Department of Computer Science, University of North Carolina (1995)Google Scholar
  44. 44.
    Wu M., Smyth A.W.: Application of the unscented Kalman filter for real-time nonlinear structural system identification. Struct. Control Health Monit. 14(7), 971–990 (2007). doi: 10.1002/stc.186 CrossRefGoogle Scholar
  45. 45.
    Yang J.N., Lei Y., Lin S., Huang N.: Hilbert–Huang based approach for structural damage detection. J. Eng. Mech. 130(1), 85–95 (2004). doi: 10.1061/(ASCE)0733-9399(2004)130:1(85) CrossRefGoogle Scholar
  46. 46.
    Yoshida, I.: Damage detection using Monte Carlo filter based on non-Gaussian noise. In: Structural Safety and Reliability: ICOSSAR’01, p. 2001 (2001)Google Scholar
  47. 47.
    Yuen K.V., Liang P.F., Kuok S.C.: Online estimation of noise parameters for Kalman filter. Struct. Eng. Mech. 47(3), 361–381 (2013). doi: 10.12989/sem.2013.47.3.361 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations