Advertisement

Acta Mechanica

, Volume 227, Issue 6, pp 1533–1556 | Cite as

Fitting of the strength hypotheses

  • V. A. KolupaevEmail author
  • M.-H. Yu
  • H. Altenbach
Original Paper

Abstract

The equivalent stress approach allows the comparison of arbitrary multiaxial stress states with a uniaxial one. Based on the concept of the equivalent stress, several strength hypotheses (limit surfaces) were formulated. These hypotheses take into account not only existing information from the tests. They can also describe a experiences and different expectations concerning the material behavior mathematically. Due to the simplicity and clarity, the equivalent stress concept is widely used.

Collected experimental data, applications, and know-how make this approach an extremely powerful tool for engineering design. The method can also be easily applied in the case of new materials. As an example, polymethacrylimide (PMI) hard foam ROHACELL® 110IG, from manufacturer Evonik Röhm GmbH (Darmstadt), will be in the focus of this study.

Modern strength hypotheses are functions of several parameters. The application of these hypotheses requires in addition to tension, compression, and torsion test data further experimental results. Such data are often not reliable or widely scattered. Hence, the adjustment of the parameters of the chosen hypothesis is not unique. Some extrapolations with respect to the hydrostatic stress states can lead to unacceptable results and, therefore, the parameters must be restricted.

In this work, several restrictions based on the principles of conservative material description are introduced. They adjust a shape of the limit surface in the principal stress space. These restrictions are geometrically justified. The influence of various restrictions on the limit surface is analyzed. The effectiveness is tested with the help of own measured data. Reliable material descriptions for hard foams will be suggested.

Keywords

Foam Equivalent Stress Stress Relation Gray Cast Iron Syntactic Foam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenbach H., Altenbach J., Zolochevsky A.: Erweiterte Deformations-modelle und Versagens-kriterien der Werkstoff-mechanik. Deutscher Verlag für Grundstoffindustrie, Stuttgart (1995)Google Scholar
  2. 2.
    Altenbach, H., Bolchoun, A., Kolupaev, V.A.: Phenomenological yield and failure criteria. In: Altenbach H., Öchsner A. (eds.) Plasticity of Pressure-Sensitive Materials, Engineering Materials. Berlin Heidelberg. pp. 49–152 (2014)Google Scholar
  3. 3.
    Altenbach, H., Kolupaev, V.A. : Classical and non-classical failure criteria. In: Altenbach, H., Sadowski, T. (eds.) Failure and Damage Analysis of Advanced Materials, International Centre for Mechanical Sciences CISM, Courses and Lectures Vol. 560., pp. 1–66. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Annin B.D.: Theory of ideal plasticity with a singular yield surface. J. Appl. Mech. Tech. Phys. 40(2), 347–353 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Awaji H., Sato S.: A statistical theory for the fracture of brittle solids under multi-axial stresses. Int. J. Fract. 14(1), R13–R16 (1978)CrossRefGoogle Scholar
  6. 6.
    Backhaus G.: Deformations gesetze. Akademie-Verlag, Berlin (1983)Google Scholar
  7. 7.
    Benvenuto E.: An Introduction to the History of Structural Mechanics. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Betten J.: Kontinuumsmechanik, 2nd ed. Springer, Berlin (2001)CrossRefGoogle Scholar
  9. 9.
    Bigoni D., Piccolroaz A.: Yield criteria for quasibrittle and frictional materials. Int. J. Solids Struct. 41(11), 2855–2878 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Birger I.A., Shopp B.F., Iosilevich G.B.: Strength Computations for Machine Components. Handbook (in Russ.: Raschet na prochnost’ detalej mashin. Spravochnik). Mashinostroenie, Moscow (1993)Google Scholar
  11. 11.
    Blatz P.J.: Application of finite elastic theory to the behavior of rubber-like materials. Rubber Chem. Technol. 36(5), 1459–1496 (1963)CrossRefGoogle Scholar
  12. 12.
    Blumenauer H.: Werkstoffprüfung. Dt. Verl. für Grund-stoff-industrie, Leipzig (1996)Google Scholar
  13. 13.
    Bolchoun A., Kolupaev V.A., Altenbach H.: Convex and non-convex flow surfaces (in German: Konvexe und nichtkonvexe Fließflächen). Forsch. Ing. 75(2), 73–92 (2011)CrossRefGoogle Scholar
  14. 14.
    Burzyński W.: Study on Material Effort Hypotheses, (in Polish: Studjum nad Hipotezami Wytężenia). Akademia Nauk Technicznych, Lwów (1928)Google Scholar
  15. 15.
    Burzyński W.: Über die Anstrengungshypothesen. Schweiz. Bauztg. 94(21), 259–262 (1929)Google Scholar
  16. 16.
    Burzyński W.: Über die Anstrengungshypothesen (Reply). Schweiz. Bauztg. 95(7), 87–88 (1930)Google Scholar
  17. 17.
    Burzyński, W.: Selected passages from Włodzimierz Burzyński’s doctoral dissertation “Study on Material Effort Hypotheses” printed in Polish by the Academy of Technical Sciences, Lwów, (1928), 1–192. Engng Trans. Polish Academy of Sciences, 57:3–4, 127–157 (2009)Google Scholar
  18. 18.
    Chen W.F., Zhang H.: Structural Plasticity: Theory, Problems, and CAE Software. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  19. 19.
    Christensen R.M.: The Theory of Materials Failure. University Press, Oxford (2013)CrossRefGoogle Scholar
  20. 20.
    Christensen R.M., Freeman D.C., DeTeresa S.J.: Failure criteria for isotropic materials, applications to low-density types. Int. J. Solids Struct. 39(4), 973–982 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Coffin L.F., Schenectady N.Y.: The flow and fracture of a brittle material. J. Appl. Mech. 17, 233–248 (1950)Google Scholar
  22. 22.
    Coulomb C.A.: Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs, a la architecture. Mem. Acad. Roy. Div. Sav 7, 343–387 (1776)Google Scholar
  23. 23.
    de Araújo F.C.: Elasticidade e Plasticidade. Imprensa Portuguesa, Porto (1962)Google Scholar
  24. 24.
    de Saint-Venant A.J.C.B.: Theorie du mouvement non permanent des eaux, avec application aux crues des rivieres et a l’introduction de marees dans leurs lits. C. R. Seances Acad. Sci. 73, 237–240 (1871)zbMATHGoogle Scholar
  25. 25.
    DeRuntz J.A., Hoffman O.: The static strength of syntactic foams. Trans. ASME. J. Appl. Mech. 36, 551–557 (1969)CrossRefGoogle Scholar
  26. 26.
    Droste, A.: Beschreibung und Anwendung eines elastisch-plastischen Materialmodells mit Schädigung für hochporöse Metallschäume. Bericht Nr. II-9, Inst. für Mechanik (Bauwesen), Stuttgart, (2004)Google Scholar
  27. 27.
    Drucker, D.C.: Stress-strain relations for strain hardening materials: Discussion and proposed experiments. In: Reissner, E., Prager, W., Stoker, R.R. (eds.) Non-Linear Problems in Mechanics of Continua. Proceedings of the First Symposium in Applied Mathematics, vol. 1, pp. 181–187. Brown University, American Mathematical Society, New York (1949)Google Scholar
  28. 28.
    Drucker D.C., Prager W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157–165 (1952)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ehlers,W.: Constitutive equations for granularmaterials in geomechanical context. In: Hutter, K. (ed.) Continuum Mechanics in Environmental Science and Geophysics, Number 337 in CISM, pp. 313–402. Springer, Wien (1993)Google Scholar
  30. 30.
    Ehlers W.: A single-surface yield function for geomaterials. Arch. Appl. Mech. 65(4), 246–259 (1995)CrossRefzbMATHGoogle Scholar
  31. 31.
    Fahlbusch, N.-C.: Entwicklung und Analyse mikromechanischer Modelle zur Beschreibung des Effektivverhaltens von geschlossenzelligen Polymerschäumen. PhD thesis, Fachbereich Maschinenbau der Technischen Universität Darmstadt, (2015)Google Scholar
  32. 32.
    Fahlbusch N.-C., Becker W., Kolupaev V.A., Geertz G.: Non-linear material behaviour and failure of closed-cell polymer foams. Acta Mech. 226(12), 1–9 (2015)MathSciNetGoogle Scholar
  33. 33.
    Fahlbusch, N.-C., Kolupaev, V.A., Becker,W. : Generalized limit surfaces with an example of hard foams. In: Naumenko, K. (ed.) Advanced Methods of Continuum Mechanics for Materials and Structures., pp. 1–28. Springer, Berlin (2016)Google Scholar
  34. 34.
    Finnie I., Heller W.R.: Creep of Engineering Materials. McGraw-Hill, New York (1959)Google Scholar
  35. 35.
    Föppl A., Föppl L.: Drang und Zwang: Eine höhere Festigkeitslehre für Ingenieure. R. Oldenbourg, München (1920)zbMATHGoogle Scholar
  36. 36.
    Fromm H.: Grenzen des elastischen Verhaltens beanspruchter Stoffe. In: Auerbach, F., Hort, W. (eds.) Statik und Dynamik elastischer Körper nebst Anwendungsgebieten. II., pp. 359–435. Teil. Zum Gebrauch für Ingenieure, Phys. Math. (1931)Google Scholar
  37. 37.
    Gol’denblat I.I., Kopnov V.A.: Yield and Strength Criteria for Structural Materials (in Russ.: Kriterii prochnosti i plastichnosti konstrukzionnych materialov). Mashinostroenie, Moscow (1968)Google Scholar
  38. 38.
    Göldner H., Holzweißig F.: Leitfaden der Technischen Mechanik: Statik, Festigkeitslehre, Kinematik, Dynamik. Fachbuchverlag, Leipzig (1989)Google Scholar
  39. 39.
    Green R.J.: A plasticity theory for porous solids. Int. J. Mech. Sci. 14(4), 215–224 (1972)CrossRefzbMATHGoogle Scholar
  40. 40.
    Hayhurst D.R.: Creep rupture under multi-axial states of stress. J. Mech. Phys. Solids 20(6), 381–390 (1972)CrossRefGoogle Scholar
  41. 41.
    Haythornthwaite R.M.: Range of yield condition in ideal plasticity. Proc. ASCE. J. Eng. Mech. Div. EM 6(87), 117–133 (1961)Google Scholar
  42. 42.
    Hencky H.: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen. ZAMM 4(4), 323–334 (1924)CrossRefzbMATHGoogle Scholar
  43. 43.
    Hill R.: LXVI. On the inhomogeneous deformation of a plastic lamina in a compression test. Philos. Mag. Ser. 7 41(319), 733–744 (1950)CrossRefzbMATHGoogle Scholar
  44. 44.
    Huang, P.C.: Fracture criterion of isotropic materials. Technical report, Naval Surface Warfare Center, DTIC Document, NAVSWC TR 90-76. Dahlgren, Virginia (1986)Google Scholar
  45. 45.
    Huber, M.T.: Specific strain work as a measurement of material effort (in Polish: Właściwa praca odkształcenia jako miara wytężenia materyału). Czas. Tech. 22, 34–40, 49–50, 61–62, 80–81 (1904)Google Scholar
  46. 46.
    Ishlinsky A.Yu.: Hypothesis of strength of shape change (in Russ.: Gipoteza prochnosti formoizmenenija). Uchebnye Zapis. Mosk. Univ. Mekhanika 46, 104–114 (1940)Google Scholar
  47. 47.
    Ismar H., Mahrenholtz O.: Über Beanspruchungshypothesen für metallische Werkstoffe. Konstruktion 34, 305–310 (1982)Google Scholar
  48. 48.
    Ivlev D.D.: The theory of fracture of solids (in Russ.: K teorii razrusheniia tverdykh tel). J. Appl. Math. Mech. 23(3), 884–895 (1959)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Ko, W.L.: Application of the Finite Elastic Theory to the Behavior of Rubber-like Materials. PhD thesis, California Institute of Technology, Pasadena (1963)Google Scholar
  50. 50.
    Kolupaev, V.A.: 3D-Creep Behaviour of Parts Made of Non-Reinforced Thermoplastics (in German: Dreidimensionales Kriechverhalten von Bauteilen aus unverstärkten Thermoplasten). PhD thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, (2006)Google Scholar
  51. 51.
    Kolupaev V.A., Altenbach H.: Considerations on the Unified Strength Theory due to Mao-Hong Yu (in German: Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu). Forsch. Ing. 74(3), 135–166 (2010)CrossRefGoogle Scholar
  52. 52.
    Kolupaev V.A., Becker W., Massow H.: Failure of hard foams under multiaxial loading. In: Grellmann, W. (ed.) Internationale wissenschaftliche Tagung Polymerwerkstoffe polymertech 14, 25–27., pp. 183–186. Juni, Merseburg Kunststoff-Kompetenzzentrum Halle-Merseburg, Institut für Polymerwerkstoffe (2014)Google Scholar
  53. 53.
    Kolupaev V.A., Becker W., Massow H., Dierkes D.: Design of test specimens from hard foams for the investigation of biaxial tensile strength (in German: Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit). Forsch. Ing. 78(3–4), 69–86 (2014)CrossRefGoogle Scholar
  54. 54.
    Kolupaev V.A., Becker W., Massow H., Kiegelmann E.M.: Reliable designs in foam (in German: Mit Schaumstoffen zuverlässig konstruieren). Mag. Plast. Kunstst. Int. 105(1-2), 32–35 (2015)Google Scholar
  55. 55.
    Kolupaev V.A., Bolchoun A., Altenbach H.: New trends in application of strength hypotheses (in German: Aktuelle Trends beim Einsatz von Festigkeitshypothesen). Konstruktion 61(5), 59–66 (2009)Google Scholar
  56. 56.
    Kolupaev, V.A., Bolchoun, A., Altenbach, H.: Geometrical-mechanical model applied to PVC-foams. In: Radusch, H.J., Fiedler, L., (eds.) 14. International Scientific Conference on Polymeric Materials 2010, 15–17 September. Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 31 p, (2011)Google Scholar
  57. 57.
    Kolupaev V.A., Bolchoun A., Altenbach H.: Strength hypothesis applied to hard foams, advances in experimental mechanics VIII. Appl. Mech. Mater. 70, 99–104 (2011)CrossRefGoogle Scholar
  58. 58.
    Kolupaev, V.A., Fahlbusch, N.-C., Massow, H., Becker, W.: Multi-axial tests on hard foams. In: Cellular Materials - CellMAT 2014 October 22–24, Dresden, 2014. 6 p, Deutsche Gesellschaft für Materialkunde DGM.Google Scholar
  59. 59.
    Kolupaev V.A., Yu M.-H., Altenbach H.: Visualisation of the unified strength theory. Arch. Appl. Mech. 83(7), 1061–1085 (2013)CrossRefzbMATHGoogle Scholar
  60. 60.
    Lagzdin’ A.Zh., Tamuzh V.P.: Construction of a phenomenological theory of the fracture of an anisotropic medium (in Russ.: K postroeniju fenomenologicheskoj teorii razrushenija anizotropnoj sredy). Mekhanika Polim. 7(4), 563–571 (1971)Google Scholar
  61. 61.
    Lebedev A.A.: Development of the theories of strength in the mechanics of materials. Strength Mater. 43(5), 578–592 (2010)CrossRefGoogle Scholar
  62. 62.
    Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  63. 63.
    Marciniak Z.: Graphical representation of states of stress and strain. Arch. Mech. 3, 261–274 (1971)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Mariotte, M.: Traité du Mouvement des Eaux et des Autres Corps Fluides. J. Jambert, Paris (1700)Google Scholar
  65. 65.
    Matsuoka H., Nakai T.: Stress-deformation and strength characteristics of soil under three different principal stresses. Proc. Jpn. Soc. Civ. Eng. JSCE 232, 59–70 (1974)CrossRefGoogle Scholar
  66. 66.
    McAdam D.J.J.: Fracture of metals under combined stresses. Trans. Am. Soc. Met. 37, 538–566 (1946)Google Scholar
  67. 67.
    Mendera Z.: Wytężenie spoiny czołowej w interpretacji powierzchni granicznych. Prz. Spaw. SIMP XVIII(1), 6–13 (1966)Google Scholar
  68. 68.
    Mirolyubov, I.N.: On the generalization of the strength theory based on the octahedral stresses in the case of brittle materials (in Russ.: K voprosu ob obobshenii teorii prochnosti oktaedricheskikh kasatelnyh naprjazhenij na khrupkie materialy). Trudy Leningradskogo Technologicheskogo Instituta, pp. 42–52 (1953)Google Scholar
  69. 69.
    Münch, M.: Mechanisches Kurzzeitverhalten von thermoplastischen Konstruktionsschaumstoffen unter mehrachsiger Beanspruchung. PhD thesis, Institut für Werkstofftechnik, Universität Kassel, Kassel, (2005)Google Scholar
  70. 70.
    Murzewski, J.: Une theorie statistique du corps fragile quasihomogene. In IXe Congrès International de Mécanique Appliquée, ICAM-1956, vol. 5, pp. 313–320, Université de Bruxelles, (1957)Google Scholar
  71. 71.
    Murzewski J.: A probabilistic theory of plastic and brittle behaviour of quasi-homogeneous materials. Arch. Mech. Stosow. 3(12), 203–227 (1960)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Novozhilov V.V.: On the connection between stresses and strains in a nonlinear-elastic continuum (in Russ.: O svjazi mezhdu naprjazhenijami i deformazijami v nelinejno-uprugoj srede). Prikl. Mat. Mekhanika XV(2), 183–194 (1951)Google Scholar
  73. 73.
    Novozhilov V.V.: On the principles of the statical analysis of the experimental results for isotropic materials (in Russ.: O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov). Prikl. Mat. Mekhanika XV(6), 709–722 (1951)Google Scholar
  74. 74.
    Ottosen N.S., Ristinmaa M.: The Mechanics of Constitutive Modeling. Elsevier Science, London (2005)zbMATHGoogle Scholar
  75. 75.
    Pae K.D.: The macroscopic yielding behaviour of polymers in multiaxial stress fields. J. Mater. Sci. 12, 1209–1214 (1977)CrossRefGoogle Scholar
  76. 76.
    Paul B.: Macroscopic plastic flow and brittle fracture. In: Liebowitz, H. (ed.) Fracture: An Advanced Treatise, vol II., pp. 313–496. Academic, New York (1968)Google Scholar
  77. 77.
    Pełczyński T.: Wpływ stanu napięcia na przejście materiału w stan plastyczny. Prz. Mech. 7, 204–208 (1951)Google Scholar
  78. 78.
    Penasa, M., Piccolroaz, A., Argani, L., Bigoni, D.: Integration algorithms of elastoplasticity for ceramic powder compaction. J. Eur. Ceram. Soc. 34(11), 2775–2788 (2014)Google Scholar
  79. 79.
    Piccolroaz A., Bigoni D.: Yield criteria for quasibrittle and frictional materials: a generalization to surfaces with corners. Int. J. Solids Struct. 46(20), 3587–3596 (2009)CrossRefzbMATHGoogle Scholar
  80. 80.
    Pisarenko G.S., Lebedev A.A.: Deformation and Strength of Materials under Complex Stress State (in Russ.: Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii). Naukowa Dumka, Kiev (1976)Google Scholar
  81. 81.
    Prager W., Hodge P.: Theorie ideal plastischer Körper. Springer, Wien (1954)CrossRefzbMATHGoogle Scholar
  82. 82.
    Rankine W.J.M.: Manual of Applied Mechanics. Griffin, London (1876)zbMATHGoogle Scholar
  83. 83.
    Reckling K.: Plastizitätstheorie und ihre Anwendung auf Festigkeitsprobleme. Springer, Berlin (1967)CrossRefzbMATHGoogle Scholar
  84. 84.
    Reuss A.: Vereinfachte Beschreibung der plastischen Formänderungsgeschwindigkeiten bei Voraussetzung der Schubspannungsfließ bedingung. ZAMM 13(5), 356–360 (1933)CrossRefzbMATHGoogle Scholar
  85. 85.
    Rohacell. Product information ROHACELL® IG/IG-F. Evonik Industries, Evonik Röhm GmbH, Performance Polymers Business Unit, http://www.rohacell.com, Darmstadt, (2010)
  86. 86.
    Sähn S., Göldner H., Nickel J., Fischer K.: Bruch- und Beurteilungskriterien in der Festigkeitslehre. Fachbuch verlag, Leipzig (1993)Google Scholar
  87. 87.
    Sauter, J., Winterger, N.: Neue und alte statische Festigkeitshypothesen. VDI, Reihe 1: Konstruktionstechnik / Maschinenelemente Nr. 191, Düsseldorf, (1990)Google Scholar
  88. 88.
    Sayir M.: Zur Fließbedingung der Plastizitätstheorie. Ing. Arch. 39, 414–432 (1970)CrossRefzbMATHGoogle Scholar
  89. 89.
    Sayir M., Ziegler H.: Der Verträglichkeitssatz der Plastizitätstheorie und seine Anwendung auf räumlich unstetige Felder. Z. Angew. Math. Phys. ZAMP 20(1), 78–93 (1969)CrossRefzbMATHGoogle Scholar
  90. 90.
    Schleicher F.: Der Spannungszustand an der Fließgrenze (Plastizitätsbedingung). ZAMM 6(3), 199–216 (1926)CrossRefzbMATHGoogle Scholar
  91. 91.
    Schleicher F.: Über die Sicherheit gegen Überschreiten der Fliessgrenze bei statischer Beanspruchung. Bauingenieur 9(15), 253–261 (1928)Google Scholar
  92. 92.
    Schlimmer M.: Zeitabhängiges mechanisches Werkstoffverhalten: Grundlagen, Experimente, Rechenverfahren für die Praxis. Springer, Berlin (1984)CrossRefGoogle Scholar
  93. 93.
    Schmidt R.: Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet. Ing. Arch. 3(3), 215–235 (1932)CrossRefzbMATHGoogle Scholar
  94. 94.
    Shanley F.R.: Strength of Materials. McGraw-Hill, New York (1957)Google Scholar
  95. 95.
    Shaw M.C., Sata T.: The plastic behavior of cellular materials. Int. J. Mech. Sci. 8, 469–478 (1966)CrossRefGoogle Scholar
  96. 96.
    Skrzypek J.J.: Plasticity and Creep: Theory, Examples and Problems. CRC Press, Boca Raton (1993)zbMATHGoogle Scholar
  97. 97.
    Timoshenko S.P.: History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structure. McGraw-Hill, New York (1953)Google Scholar
  98. 98.
    Tresca H.: Mémoire sur l’ecoulement des corps solides. Mém. Pres. Div. Savants 18, 733–799 (1868)Google Scholar
  99. 99.
    Tschoegl N.W.: Failure surfaces in principal stress space. J. Polym. Sci. C Polym. Symp. 32, 239–267 (1971)CrossRefGoogle Scholar
  100. 100.
    von Mises, R.: Mechanik des festen K örpers im plastischen deformablen Zustand. Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen, Mathematisch-physikalische Klasse, pp. 589–592, (1913)Google Scholar
  101. 101.
    von Mises R.: Mechanik der plastischen Formänderung von Kristallen. ZAMM 8, 161–185 (1928)CrossRefzbMATHGoogle Scholar
  102. 102.
    Wang D.A., Pan J.: A non-quadratic yield function for polymeric foams. Int. J. Plast. 22(3), 434–458 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    Wolfram S.: The Mathematica Book: The Definitive Best-Selling Presentation of Mathematica by the Creator of the System. Wolfram Media, Champaign (2003)Google Scholar
  104. 104.
    Yagn Yu.I.: New methods of strength prediction (in Russ.: Novye metody pascheta na prochnost’). Vestn. Inzhenerov Tekhnikov 6, 237–244 (1931)Google Scholar
  105. 105.
    Yagn Yu.I.: Strength of Materials: Theory and Problems (in Russ.: Soprotivlenie materialov: teorja i zadachnik). Kubuch, Leningrad (1933)Google Scholar
  106. 106.
    Yu, M.-H.: General behaviour of isotropic yield function (in Chinese). Scientific and Technological Research Paper of Xi’an Jiaotong University, pp. 1–11, (1961)Google Scholar
  107. 107.
    Yu M.-H.: Twin shear stress yield criterion. Int. J. Mech. Sci. 25(1), 71–74 (1983)CrossRefGoogle Scholar
  108. 108.
    Yu M.-H.: Twin shear stress yield criterion, Reply to Prof. Hill’s comments. Int. J. Mech. Sci. 25(11), 845–846 (1983)CrossRefGoogle Scholar
  109. 109.
    Yu M.-H.: Advances in strength theories for materials under complex stress state in the 20th century. Appl. Mech. Rev. 55(5), 169–218 (2002)CrossRefGoogle Scholar
  110. 110.
    Yu M.-H.: Unified Strength Theory and its Applications. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  111. 111.
    Zhang J., Kikuchi N., Li V., Yee A., Nusholtz G.: Constitutive modeling of polymeric foam material subjected to dynamic crash loading. Int. J. Impact Eng. 21(5), 369–386 (1998)CrossRefGoogle Scholar
  112. 112.
    Zhang J., Lin Z., Wong A., Kikuchi N., Li V.C., Yee A.F., Nusholtz G.S.: Constitutive modeling and material characterization of polymeric foams. J. Eng. Mater. Technol. 119(3), 284–291 (1997)CrossRefGoogle Scholar
  113. 113.
    Zhang T.: A general constitutive relation for linear elastic foams. Int. J. Mech. Sci. 50, 1123–1132 (2008)CrossRefzbMATHGoogle Scholar
  114. 114.
    Ziegler H.: Zum plastischen Potential der Bodenmechanik. Z. Angew. Math. Phys. ZAMP 20, 659–675 (1969)CrossRefzbMATHGoogle Scholar
  115. 115.
    Źyczkowski M.: Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publ., Warszawa (1981)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Fraunhofer Institute for Structural Durability and System Reliability LBFDarmstadtGermany
  2. 2.State Key Laboratory for Strength and Vibration of Mechanical StructuresXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  3. 3.Otto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations