Acta Mechanica

, Volume 227, Issue 2, pp 333–352 | Cite as

On the modeling of tilted fixed-guided flexible beams under tension

  • Ali Bazaei
  • Mohammad Maroufi
  • S. O. Reza Moheimani
Original Paper

Abstract

We derive explicit solutions for a fixed-guided slender suspension beam that is initially straight and tilted with respect to the moving direction of its sliding end. The beam experiences substantial axial forces during the tension, resulting in a nonlinear boundary value problem. We consider sliding end displacements in the direction that cause longitudinal tension along the beam. We first propose an exact approach, leading to analytical solutions for various physical variables such as the transverse force and deflection profile, in terms of the axial force and the positive real solution of a third-order algebraic equation. We also propose an alternative approximate solution based on a second-order equation, which provides closed-form analytical solutions for the physical variables. We also introduce analytical validation techniques for the underlying assumptions. Consistency with nonlinear finite-element analysis is also addressed. Moreover, the results of the approximate method are represented by dimensionless formulas, generating charts to predict solutions for arbitrarily assigned beam parameters. Magnitudes of the normal and shear stress values are also included to consider the effects of yield and shear strengths as the limiting factors at large deflection conditions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aldraihem, O., Wetherhold, R.C., Singh, T.: Intelligent beam structures: Timoshenko theory versus Euler-Bernoulli theory. In: IEEE International Conference on Control Applications, pp. 976–981 (1996)Google Scholar
  2. 2.
    Bazaei A., Maroufi M., Mohammadi A., Moheimani S.O.R.: Displacement sensing with silicon flexures in MEMS nanopositioners. IEEE J. Microelectromech. Syst. 23(3), 502–504 (2014)CrossRefGoogle Scholar
  3. 3.
    Boudaoud M., Gorrec Y.H.Y.L.: Modeling and optimal force control of a nonlinear electrostatic microgripper. IEEE/ASME Trans. Mechatron. 18(3), 1130–1139 (2013)CrossRefGoogle Scholar
  4. 4.
    Cowper G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33(2), 335–340 (1966)CrossRefMATHGoogle Scholar
  5. 5.
    Dao D.V., Toriyama T., Wells J., Sugiyama S.: Silicon piezoresistive six-degree of freedom force-moment micro sensor. Sens. Mater. 15(3), 113–135 (2003)Google Scholar
  6. 6.
    Fertis D.G.: Nonlinear Structural Engineering. Springer, Berlin (2006)MATHGoogle Scholar
  7. 7.
    Friedman Z., Kosmatka J.: An improved two-node timoshenko beam finite element. Comput. Struct. 47(3), 473–481 (1993)CrossRefMATHGoogle Scholar
  8. 8.
    Frisch-Fay R.: Flexible Bars. Butterworths, London (1962)MATHGoogle Scholar
  9. 9.
    Gere J.M., Timoshenko S.P.: Mechanics of Materials. PWS Publishing Company, Boston (1997)Google Scholar
  10. 10.
    Holst G.L., Teichert G.H., Jensen B.D.: Modeling and experiments of buckling modes and deflection of fixed-guided beams in compliant mechanisms. J. Mech. Des. 133(5), 051,002 (2011)CrossRefGoogle Scholar
  11. 11.
    Hopcroft M., Nix W., Kenny T.: What is the young’s modulus of silicon?. J. Microelectromech. Syst. 19(2), 229–238 (2010)CrossRefGoogle Scholar
  12. 12.
    Howell L.L., Midha A.: Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms. J. Mech. Des. 117(1), 156–165 (1995)CrossRefGoogle Scholar
  13. 13.
    Humer A.: Exact solutions for the buckling and postbuckling of shear-deformable beams. Acta Mech. 224(7), 1493–1525 (2013)CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    Iannacci J.: Practical Guide to RF-MEMS. Wiley, London (2013)CrossRefGoogle Scholar
  15. 15.
    Kim C., Ebenstein D.: Curve decomposition for large deflection analysis of fixed-guided beams with application to statically balanced compliant mechanisms. J. Mech. Robot. 4(4), 041,009 (2012)CrossRefGoogle Scholar
  16. 16.
    Midha, A., Bapat, S.G., Mavanthoor, A., Chinta, V.: Analysis of a fixed-guided compliant beam with an inflection point using the pseudo-rigid-body model (PRBM) concept. In: ASME International Design Engineering Technical Conferences (IDETC/CIE), 36th Mechanisms and Robotics Conference, vol. 4, pp. 351–361. ASME Proceedings (2012)Google Scholar
  17. 17.
    Mohammadi A., Fowler A.G., Yong Y.K., Moheimani S.O.R.: A feedback controlled MEMS Nanopositioner for on-chip high-speed AFM. IEEE J. Microelectromech. Syst. 23(3), 610–619 (2014)CrossRefGoogle Scholar
  18. 18.
    Ogawa, M., Isono, Y.: Novel shear strength evaluation of MEMS materials using asymmetrical four-point bending technique. In: IEEE 20th International Conference on Micro Electro Mechanical Systems, 2007. MEMS, pp. 259–262 (2007)Google Scholar
  19. 19.
    Petersen K.: Silicon as a mechanical material. Proc. IEEE 70(5), 420–457 (1982)CrossRefGoogle Scholar
  20. 20.
    Popov E.P.: Engineering Mechanics of Solids, 2 edn. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  21. 21.
    Su T., Nitzan S., Taheri-Tehrani P., Kline M., Boser B., Horsley D.: Silicon MEMS disk resonator gyroscope with an integrated CMOS analog front-end. IEEE Sens. J. 14(10), 3426–3432 (2014)CrossRefGoogle Scholar
  22. 22.
    Wortman J.J., Evans R.A.: Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J. Appl. Phys. 36(1), 153–156 (1965)CrossRefGoogle Scholar
  23. 23.
    Yong Y.K., Moheimani S.O.R., Kenton B.J., Leang K.K.: Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121,101 (2012)CrossRefGoogle Scholar
  24. 24.
    Zhou G., Dowd P.: Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators. J. Micromech. Microeng. 13(2), 178–183 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Ali Bazaei
    • 1
  • Mohammad Maroufi
    • 1
  • S. O. Reza Moheimani
    • 2
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of Newcastle AustraliaCallaghanAustralia
  2. 2.Department of Mechanical EngineeringUniversity of Texas at DallasDallasUS

Personalised recommendations