Acta Mechanica

, Volume 227, Issue 2, pp 311–319 | Cite as

Phase slip solutions in magnetically modulated Taylor–Couette flow

Original Paper

Abstract

We numerically investigate Taylor–Couette flow in a wide-gap configuration, with \({r_i/r_o=1/2}\), the inner cylinder rotating, and the outer cylinder stationary. The fluid is taken to be electrically conducting, and a magnetic field of the form \({B_z\approx(1 + \cos(2\pi z/z_0))/2}\) is externally imposed, where the wavelength \({z_0=50(r_o-r_i)}\). Taylor vortices form where the field is weak, but not where it is strong. As the Reynolds number measuring the rotation rate is increased, the initial onset of vortices involves phase slip events, whereby pairs of Taylor vortices are periodically formed and then drift outward, away from the midplane where \({B_z=0}\). Subsequent bifurcations lead to a variety of other solutions, including ones both symmetric and asymmetric about the midplane. For even larger Reynolds numbers, a different type of phase slip arises, in which vortices form at the outer edges of the pattern and drift inward, disappearing abruptly at a certain point. These solutions can also be symmetric or asymmetric about the midplane and co-exist at the same Reynolds number. Many of the dynamics of these phase slip solutions are qualitatively similar to previous results in geometrically ramped Taylor–Couette flows.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van Gils D.P.M., Bruggert G.W., Lathrop D.P., Sun C., Lohse D.: The Twente turbulent Taylor–Couette (\({{T}^3{C}}\)) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders. Rev. Sci. Inst. 82, 025105 (2011)CrossRefGoogle Scholar
  2. 2.
    Avila K., Hof B.: High-precision Taylor–Couette experiment to study subcritical transitions and the role of boundary conditions and size effects. Rev. Sci. Inst. 84, 065106 (2013)CrossRefGoogle Scholar
  3. 3.
    Collins C., Clark M., Cooper C.M., Flanagan K., Khalzov I.V., Nornberg M.D., Seidlitz B., Wallace J., Forest C.B.: Taylor–Couette flow of unmagnetized plasma. Phys. Plasmas 21, 042117 (2014)CrossRefGoogle Scholar
  4. 4.
    Youd A.J., Willis A.P., Barenghi C.F.: Non-reversing modulated Taylor–Couette flows. Fluid Dyn. Res. 36, 61–73 (2005)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Watanabe T., Toya Y.: Vertical Taylor–Couette flow with free surface at small aspect ratio. Acta Mech. 223, 347–353 (2012)CrossRefMATHGoogle Scholar
  6. 6.
    Shi L., Rampp M., Hof B., Avila M.: A hybrid MPI-OpenMP parallel implementation for pseudospectral simulations with application to Taylor–Couette flow. Comp. Fluids 106, 1–11 (2015)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pomeau Y., Manneville P.: Stability and fluctuations of a spatially periodic convective flow. J. Phys. Paris 40, L609–612 (1979)CrossRefGoogle Scholar
  8. 8.
    Kramer L., Ben-Jacob E., Brand H., Cross M.C.: Wavelength selection in systems far from equilibrium. Phys. Rev. Lett. 49, 1891–1894 (1982)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Riecke H., Paap H.-G.: Perfect wave-number selection and drifting patterns in ramped Taylor vortex flow. Phys. Rev. Lett. 59, 2570–2573 (1987)CrossRefGoogle Scholar
  10. 10.
    Chomaz J.-M.: Global instabilities in spatially developing flows: non-normality and nonlinearity. Ann. Rev. Fluid Mech. 37, 357–392 (2005)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Cannell D.S., Dominguez-Lerma M.A., Ahlers G.: Experiments on wave number selection in rotating Couette-Taylor flow. Phys. Rev. Lett. 50, 1365–1368 (1983)CrossRefGoogle Scholar
  12. 12.
    Dominguez-Lerma M.A., Cannell D.S., Ahlers G.: Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow. Phys. Rev. A 34, 4956–4970 (1986)CrossRefGoogle Scholar
  13. 13.
    Ning L., Ahlers G., Cannell D.S.: Wave-number selection and traveling vortex waves in spatially ramped Taylor–Couette flow. Phys. Rev. Lett. 64, 1235–1238 (1990)CrossRefGoogle Scholar
  14. 14.
    Paap H.-G., Riecke H.: Drifting vortices in ramped Taylor vortex flow: quantitative results from phase equation. Phys. Fluids. 3, 1519–1532 (1991)CrossRefMATHGoogle Scholar
  15. 15.
    Wiener R.J., Snyder G.L., Prange M.P., Frediani D., Diaz P.R.: Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow with hourglass geometry. Phys. Rev. E 55, 5489–5497 (1997)CrossRefGoogle Scholar
  16. 16.
    Velikhov E.P.: Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP 9, 995–998 (1959)Google Scholar
  17. 17.
    Balbus S.A., Hawley J.F.: A powerful local shear instability in weakly magnetized disks. Astrophys. J. 376, 214–222 (1991)CrossRefGoogle Scholar
  18. 18.
    Ji H., Goodman J., Kageyama A.: Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. Roy. Astron. Soc. 325, L1–5 (2001)CrossRefGoogle Scholar
  19. 19.
    Rüdiger G., Zhang Y.: MHD instability in differentially-rotating cylindric flows. Astron. Astrophys. 378, 302–308 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Hollerbach R., Rüdiger G.: New type of magnetorotational instability in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 95, 124501 (2005)CrossRefGoogle Scholar
  21. 21.
    Hollerbach R., Teeluck V., Rüdiger G.: Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor–Couette flow. Phys. Rev. Lett. 104, 044502 (2010)CrossRefGoogle Scholar
  22. 22.
    Nornberg M.D., Ji H., Schartman E., Roach A., Goodman J.: Observation of magnetocoriolis waves in a liquid metal Taylor–Couette experiment. Phys. Rev. Lett. 104, 074501 (2010)CrossRefGoogle Scholar
  23. 23.
    Roach A.H., Spence E.J., Gissinger C., Edlund E.M., Sloboda P., Goodman J., Ji H.: Observation of a free Shercliff layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502 (2012)CrossRefGoogle Scholar
  24. 24.
    Stefani F., Gundrum T., Gerbeth G., Rüdiger G., Schultz M., Szklarski J., Hollerbach R.: Experimental evidence for magnetorotational instability in a Taylor–Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)CrossRefGoogle Scholar
  25. 25.
    Seilmayer M., Galindo V., Gerbeth G., Gundrum T., Stefani F., Gellert M., Rüdiger G., Schultz M., Hollerbach R.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014)CrossRefGoogle Scholar
  26. 26.
    Colgate S.A., Beckley H., Si J., Martinic J., Westphahl D., Slutz J., Westrom C., Klein B., Schendel P., Scharle C., McKinney T., Ginanni R., Bentley I., Mickey T., Ferrel R., Li H., Pariev V., Finn J.: High magnetic shear gain in a liquid sodium stable Couette flow experiment: a prelude to an αΩ dynamo. Phys. Rev. Lett. 106, 175003 (2011)CrossRefGoogle Scholar
  27. 27.
    Chandrasekhar S.: The stability of viscous flow between rotating cylinders in the presence of a magnetic field. Proc. R. Soc. A 216, 293–309 (1953)CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    Donnelly R.J., Ozima M.: Hydromagnetic stability of flow between rotating cylinders. Phys. Rev. Lett. 4, 497–498 (1960)CrossRefGoogle Scholar
  29. 29.
    Donnelly R.J., Ozima M.: Experiments on stability of flow between rotating cylinders in presence of a magnetic field. Proc. R. Soc. A 266, 272–286 (1962)CrossRefMATHGoogle Scholar
  30. 30.
    Hollerbach R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. A 465, 2003–2013 (2009)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Travnikov V., Eckert K., Odenbach S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)CrossRefMATHGoogle Scholar
  32. 32.
    Cabanes S., Schaeffer N., Nataf H.-C.: Turbulence reduces magnetic diffusivity in a liquid sodium experiment. Phys. Rev. Lett. 113, 184501 (2014)CrossRefGoogle Scholar
  33. 33.
    Zimmermann D.S., Triana S.A., Nataf H.-C., Lathrop D.P.: A turbulent high magnetic Reynolds number experimental model of Earth’s core. J. Geophys. Res. 119, 4538–4557 (2014)CrossRefGoogle Scholar
  34. 34.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, (1968)Google Scholar
  35. 35.
    Hollerbach R.: Spectral solutions of the MHD equations in cylindrical geometry. Int. J. Pure Appl. Math. 42, 575–581 (2008)MathSciNetGoogle Scholar
  36. 36.
    Dominguez-Lerma M.A., Ahlers G., Cannell D.S.: Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh-Bénard convection. Phys. Fluids 27, 856–860 (1984)CrossRefMATHGoogle Scholar
  37. 37.
    Jones C.A.: The transition to wavy Taylor vortices. J. Fluid Mech. 157, 135–162 (1985)CrossRefGoogle Scholar
  38. 38.
    Graham R., Domaradzki J.A.: Local amplitude equation of Taylor vortices and its boundary condition. Phys. Rev. A 26, 1572–1579 (1982)CrossRefGoogle Scholar
  39. 39.
    Rucklidge A.M., Champneys A.R.: Boundary effects and the onset of Taylor vortices. Phys. D 191, 282–296 (2004)CrossRefMathSciNetMATHGoogle Scholar
  40. 40.
    Sprague M.A., Weidman P.D.: Continuously tailored Taylor vortices. Phys. Fluids 21, 114106 (2009)CrossRefGoogle Scholar
  41. 41.
    Cramer A., Eckert S., Gerbeth G.: Flow measurements in liquid metals by means of the ultrasonic Doppler method and local potential probes. Eur. Phys. J. Special Topics 220, 25–41 (2013)CrossRefGoogle Scholar
  42. 42.
    Pulugundla G., Heinicke C., Karcher C., Thess A.: Lorentz force velocimetry with a small permanent magnet. Eur. J. Mech. B 41, 23–28 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of LeedsLeedsUK
  2. 2.Department of MathematicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations