Acta Mechanica

, Volume 227, Issue 1, pp 57–73 | Cite as

Analysis of fibrous elastic composites with nonuniform imperfect adhesion

  • R. Guinovart-Díaz
  • R. Rodríguez-Ramos
  • J. C. López-Realpozo
  • J. Bravo-Castillero
  • J. A. Otero
  • F. J. Sabina
  • F. Lebon
  • S. Dumont
Original Paper


In most composites, the fiber–matrix adhesion is imperfect; the continuity conditions for stresses and displacements are not satisfied. In this contribution, effective elastic moduli are obtained by means of the asymptotic homogenization method (AHM), for three-phase fibrous composites (matrix/mesophase/fiber) with parallelogram periodic cell. Interaction between fiber and matrix is considered, and this is called the mesophase model where the nonuniform mesophase is studied. Besides, there is another type of matrix–fiber contact which is called nonuniform spring imperfect contact. In this case, the contrast or jump of the displacements in the boundary of each phase is proportional to the corresponding component of the tension in the interface in terms of a parameter given by a certain function that depends on the position. The constituents of the composites exhibit transversely isotropic properties. A doubly periodic parallelogram array of cylindrical inclusions under longitudinal shear is considered. The three-phase model is validated by the Finite Element Method and the AHM both approaches applied to two-phase composites with nonuniform spring imperfect contact. Comparisons with theoretical and experimental results verified that the present model is efficient for the analysis of composites with presence of nonuniform imperfect interface and parallelogram cell. The effect of the nonuniform imperfection on the shear effective property is observed. The present method can provide benchmark results for other numerical and approximate methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang H., Talreja R.: Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 65, 1964–1981 (2005)CrossRefGoogle Scholar
  2. 2.
    Manson Wakeman M.D., Bernet N.: Composite processing and manufacturing: an overview, Compreh Comp. Mater. 2, 577. Elsevier Science Ltd, Oxford, UK (2000)Google Scholar
  3. 3.
    Kushch V.I.: Transverse conductivity of unidirectional fibrous composite with interface arc cracks. Int. J. Eng. Sci. 48, 343–356 (2010)MATHCrossRefGoogle Scholar
  4. 4.
    Prakash R.: Significance of defects in the fatigue failure of carbon fibre reinforced. Plast. Fibre Sci. Technol. 14, 171–181 (1981)CrossRefGoogle Scholar
  5. 5.
    Theocaris P.S.: The Mesophase Concept in Composites. Springer, Berlin (1987)CrossRefGoogle Scholar
  6. 6.
    Hashin Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50, 2509–2537 (2002)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Guinovart-Díaz R., Rodríguez-Ramos R., Bravo-Castillero J., Sabina F.J., Maugin G.A.: Closed-form thermo-elastic moduli of a periodic three-phase fiber-reinforced composite. J. Therm. Stress. 28, 1067–1093 (2005)CrossRefGoogle Scholar
  8. 8.
    Abdelmoula R., Coutris M., Marigo J.: Comportement asymptotique d’une interface mince. C. R. Acad. Sci. II 326, 237–242 (1998)MATHGoogle Scholar
  9. 9.
    Benveniste Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54(4), 708–734 (2006)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Klarbring A.: Derivation of a model of adhesively bonded joints by the asymptotic expansion method. Int. J. Eng. Sci. 29, 493–512 (1991)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Rizzoni R., Lebon F.: Asymptotic analysis of an elastic thin interphase with mismatch strain. Eur. J. Mech. A Solid 36, 1–8 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Benveniste Y., Miloh T.: Imperfect soft and stiff interfaces in two dimensional elasticity. Mech. Mater. 33, 309–323 (2001)CrossRefGoogle Scholar
  13. 13.
    Achenbach J.D., Zhu H.: Effect of interphases on micro and macro mechanical behaviour of hexagonal-array fiber composites. J. Appl. Mech. 57, 956–963 (1990)CrossRefGoogle Scholar
  14. 14.
    Hashin Z.: Thermoelastic properties of fiber composites with imperfect interface. Mech. Mater. 8, 333–338 (1990)CrossRefGoogle Scholar
  15. 15.
    Hashin Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58, 444–449 (1991)CrossRefGoogle Scholar
  16. 16.
    Hashin Z.: Thermoelastic properties of particulate composites with imperfect interface J. Mech. Phys. Solids 39, 745–762 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    López-Realpozo J.C., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Otero J.A., Sabina F.J., Lebon F., Dumont S., Sevostianov I.: Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers. Int. J. Solids Struct. 51(6), 1253–1262 (2014)CrossRefGoogle Scholar
  18. 18.
    Molkov, B.A., Pobedria, B.E.: Effective characteristic of fibrous unidirectional composite with periodic structure. Mech. Solids. 2, 119–129 (1985) (in Russian)Google Scholar
  19. 19.
    Abolfathi N., Abhay N., Ghodrat K., Chad U.: A micromechanical characterization of angular bidirectional fibrous composites. Comput. Mater. Sci. 43, 1193–1206 (2008)CrossRefGoogle Scholar
  20. 20.
    Jiang C.P., Xu Y.L., Cheung Y.K., Lo S.H.: A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application. Mech. Mater. 36, 225–237 (2004)CrossRefGoogle Scholar
  21. 21.
    Rodríguez-Ramos R., Yan P., López-Realpozo J.C., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J., Jiang C.P.: Two analytical models for the study of periodic fibrous elastic composite with different unit cells. Compos. Struct. 93, 709–714 (2011)CrossRefGoogle Scholar
  22. 22.
    Guinovart-Díaz R., López-Realpozo J.C., Rodríguez-Ramos R., Bravo-Castillero J., Ramírez M., Camacho-Montes H., Sabina F.J.: Influence of parallelogram cells in the axial behaviour of fibrous composite. Int. J. Eng. Sci. 49, 75–84 (2011)CrossRefGoogle Scholar
  23. 23.
    López-Realpozo J.C., Rodríguez-Ramos R., Guinovart-Díaz R., Bravo-Castillero J., Sabina F.J.: Transport properties in fibrous elastic rhombic composite with imperfect contact condition. Int. J. Mech. Sci. 53, 98–107 (2011)CrossRefGoogle Scholar
  24. 24.
    Pobedrya, B.E.: Mechanics of composite materials. Moscow State University Press, Moscow (1984) (in Russian).Google Scholar
  25. 25.
    Bakhvalov N., Panasenko G.: Homogenisation: Averaging Processes in Periodic Media. Kluwer, Dordrecht (1989)MATHCrossRefGoogle Scholar
  26. 26.
    Muskhelishvili N.I.: Some Basic Problems in the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)Google Scholar
  27. 27.
    Shodja H.M, Tabatabaei S.M, Kamali M.T.: A piezoelectric medium containing a cylindrical inhomogeneity: Role of electric capacitors and mechanical imperfections. Int. J. Solids Struct. 44, 6361–6381 (2007)MATHCrossRefGoogle Scholar
  28. 28.
    Nairn J.A.: Numerical implementation of imperfect interfaces. Comput. Mater. Sci. 40, 525–536 (2007)CrossRefGoogle Scholar
  29. 29.
    Dumont S., Lebon F., Rizzoni R.: An asymptotic approach to the adhesion of thin stiff films. Mech. Res. Commun. 58, 24–35 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • R. Guinovart-Díaz
    • 1
  • R. Rodríguez-Ramos
    • 1
  • J. C. López-Realpozo
    • 1
  • J. Bravo-Castillero
    • 1
  • J. A. Otero
    • 2
  • F. J. Sabina
    • 3
  • F. Lebon
    • 4
  • S. Dumont
    • 4
    • 5
  1. 1.Facultad de Matemática y ComputaciónUniversidad de La HabanaHavana 4Cuba
  2. 2.Instituto Tecnológico y de Estudios Superiores de MonterreyAtizapán de ZaragozaMéxico
  3. 3.Instituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéxicoMexico
  4. 4.Laboratoire de Mécanique et d’Acoustique, CNRS, Centrale MarseilleUniversité Aix-MarseilleMarseille Cedex 20France
  5. 5.Laboratoire Amiénois de Mathématiques Fondamentale et Appliquée CNRS UMR 7352Université de Picardie Jules VerneAmiensFrance

Personalised recommendations